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I. MIXED MODE MATRIX CRACKING
Introduction.

Structural composite laminates, notably those made of unidirectional

tape systems, are known to suffer extensive matrix cracks before the failure

of the load-carrying fibers. These matrix cracks occur because of the inter-

facial stresses that arise from local load-transfer. For instance, load transfer

from a weakened fiber bundle to an adjacent stronger fiber bundle may induce

debonding between these two fiber bundles. Similarly, load transfer from a

weakened lamina to an adjacent stronger lamina may Induce delamination

between these two laminae. Thus, the initiation and propagation of matrix

cracks in laminates of multi-directional plies usually follow either the

fiber/matrix interface or the ply/ply interface, or both.

Fig. 1. 1 shows the extensive matrix cracking that )ccurred in a notched

graphite-epoxy [02/902]s laminate subjected to uniaxial tension. Two major

types of matrix cracking occurred when viewed at the phenomenlogical scale.

Namely, in-ply cracking between two adjacent fiber bundles and delamination

between two adjacent plies. The four vertical cracks were initiated first near

the hole and propagated Inside the 00 -plies. The driving force here was clearly

due to the load-transfer from the fiber bundle cut by the hole to the fiber

bundle which is uncut. As the vertical cracks propagated away from the hole,

load transfer then took place locally between the cracked 00-plies and the

uncracked 900-plies. This In turn Induced interply stresses along the root of-.:

the vertical cracks; and delamination in the 0/90 Interface initiated and

propagated with the applied load.

A closer analysis of the cracked specimen stress field at each major

stage of crack development would reveal a complex three-dimensional stress

state. Stress concentration is high near the crack-root regions; and the

resulting crack propagation is mixed-mode (with both .;pening and shearing

V. ' a . . .* .- . . . . Q , j. w • ' - °
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actions [ 1).

The basic mechanisms of in-ply trans-fiber cracking and interply

delamination have recently been treated at the phenomenlogical scale by a

unifed energy method (21 The energy release rate concept of elastic fracture

mechanics was employed as a criterion for crack propagation. This method,

when coupled with a three-dimensional stress analysis and limitted to mode-I

propagation conditions, has proven useful for predicting brittle matrix cracks

in graphite-epoxy systems. For mode-I cracking, it is necessary to determine

the strain energy release rate 61 as the crack-driving force and validate the

corresponding critical strain energy release rate Gic as a material property 12].

As for matrix cracks that involve mixed modes, such as those illustrated

in Fig. 1.1, the applicabilty of the energy method has not been as firmly

established. One major difficulty is that the specimen geometry effects on ,

mixed-mode crack propagation are intrinsically couplkd with the material

effects. Separation of these effects requires a rigorous aialysis of the cracked ,'-"

specimen at each major stage of crack development.

There have been several studies aimed at establishing criteria for

mixed-mode matrix cracking in unidirectional laminates. Most of the studies

used graphite-epoxy systems. Wilkins, et. al. [3) and Ramkumar, et.al [4] used

the cracked-lap shear specimen loaded in uniaxial tension to induce mixed

mode-II/mode-I delamination between the cracked lap-layer and the substrate

layer. By varying the thickness of the lap-layer relative to the substrate layer,

the mixed-mode ratio Gii/G, in the measured total critical strain energy

release rate could be varied from 0.35 to 0.45. They observed that the total

strain energy release rate (Gg+Gil)c is somewhat greater than Gic obtained

under pure mode-I conditions. Bradley and Cohen [51 used a cantiliver

2
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split-beam specimen loaded by a pair of upward and downward loads applied at

the tip of the cantillver. Variation or the mixed-mode ratio 611/6, was achieved

by changing the ratio of the upward and downward loads. In this way, they

obtained a range for the GI I1 1G ratio from 0 to about 0.6. They observed that

the measured total strain energy release rate (GI+GII)c increased uniformly

with GII/G I in those systems made of brittle matrix material, but decreased

slightly with G111G1 in systems made of ductile matrix material. Wang, et. al.

[6] used a doubled side-notched off-axis unidirectioal laminate coupon loaded

In axial tension. By varying the off-axis angle from 00 to 900, the mixed-mode

strain energy release rate for GI I/ GI ratio ranging from 0 to about 3 could be

determined. They found that the total strain energy release rate (G1+G I I)c first

Increased with 61,/G1 monotonically up to about GI I/G1 = 1.5, and then reached

an asymptotic value which is about three times 6 Ic. Russell and Street [71 used

four different test specimen configurations and obtained mixed-mode strain

energy release rates for a wide range of mixed-mode cracking conditions. Their

results showed that the measured strain energy release rate values were test

specimen dependent.

Clearly, no firm agreement could be reached toward establishing a

general criterion for mixed-mode matrix cracking, despite these and n,any

other efforts. It is believed that one principal reason for the disagreement in

results is that the effects of specimen geometry on mixed-mode matrix

cracking were not rigorously separated from material effects. Specifically, the

mathematical analysis for the cracked specimen was based on either

one-dimensional beam theory or a finite element lamln&d plate model. These

approximate methods lack the required precision to treat highly three-

3
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dimensional stress fields that often contain stress singularities. This is

especially true when applied to mixed-mode cracking conditions, where

significant errors could result In the computed GI and G11 energy release rates.

ObJectives of Research.

The purpose of this study is to overcome the above stated difficulty by .1
developing an analysis for mixed-mode fracture employing an ideal specimen

configuration and loading condition. This problem can be treated rigorously on

the basis of the theory of elasticity and fracture mechanics. Concurrently, a

finite element procedure is developed to simulate the same problem and yield

accruate numerical solutions. Mathematical rigor and n...nerical accuracy are

needed at the same time in order to ensure correct separation of the specimen

geometry effects from the material effects. Finally, experiments are

conducted using specimems of similar configurations to generate mixed-mode

fracture data on a wide range of GI/G I ratios. The corresponding fracture

analysis is performed using the finite element simulation model. This will

provide a final correlation between experiment and analysis.

It should be mcntioned that an exact elasticity solution for the test

specimen configurations cannot presently be obtained, requiring use of a

numerical mode) with established accuracy.

Research Plan.

To this end, the following research plan involving four analysis steps as

illustrated in Fig. 1.2 was implemented.

Step A. We begin with a unidirectional laminate of infinite domain. Let

the laminate contain a through-thickness kinked crack and subject to a uniform

far-field tensile stress o. Let the base of the crack b* orientated normal to

the far-field tension, while the kink be in the direction of the fibers. The angle

between the fiber and the applied tension is denoted by 8. Assuming linear

4
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elastic response under the applied stress Oo, a pair of dissimilar stress

singularities develop at the two crack tips. At some critical Oo, the kink will

propagate in mixed-mode along the fiber direction. Our plan is to determine the

crack tip stress Intensity factors KI and KII as well as the strain energy

release rates G, and GI I. By treating the laminate as an elastic, homogeneous

and orthotropic body that contains the prescribed kinked crack we solve the

elastostatic problem exactly based on the theory of elasticity. Note that the

determined mixed-mode Gii/G I ratio at the tip of the kink will vary with the

angle B as well as the length of the kink, a'. We are especially interested in the

cases where a' Is arbitrarily small.

Step B. Next, we simulate the problem by a fInItL element model. Here,

we represent the Infinite plate by a rectangular plate which contains the same

kinked crack. The length and width of the plate are so large that the effects of

the plate boundaries will not affect the stress state near the kinked crack. The

finite element shape and mesh size selections must be tuned to yield a result

as close as possible with that obtained by the exact elasticity solutions. This

step establishes the degree of accuracy of the finite element model.

Step C. Having established confidence in the accuracy of the finite

element model, we then use the model and simulate a finite width, off-axis

unidirectional tensile coupon with double side-notches. We assume that the

far-field stress, oo, will initiate a kinked crack and propagate unstably along

the direction of the off-axis fibers at some critical value. The finite element

model simulates this mixed-mode cracking and yields both the kink-tip stress

intensity factors KI and KII and the strain energy release rates G, and Gi l. The

computed mixed-mode GI I/GI ratio at the tip of the kink Y;ill vary not only with

the off-axis angle 9 but also with the depth of the side-notch, a.

5
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Note that this problem differs from the previous one in that the kink-tip

behavior In this problem is affected significantly by the free edge boundary

and the notch depth relative to the width of the tensile coupon.

Step D. The final step involves experiments in which off-axis tensile

coupons with double side-notches are tested the same way as those simulated

in Step-C. Here, the critical far-field stress, Ocr, at the propagation of the kink

is recorded. This provides the necessary data for correlation with the analysis

performed in step-C.

In order to effect a realistic and reliable correlation, the off-axis angle

0 of the test specimens is varied from 00 to 900 in seven different increments

and the initial depth of the side-notches is varied from 0 1 to 0. 175 inch in four Z

increments (the width of the coupon is 1.0 inch).

The analytical treatment for the problem as described Step-A and the

finite element simulation for the same problem as described in Step-B are

outlined in Section 2. The detailed mathematical derivations and solution

procedures for the analytical problem are included in Appendix A, while the

details of the finite element calculation routine are referred to an earlier

publication. Section 3 discusses the experiment, the experimental results, the

finite element simulatic, s and the final experiment/analysis correlations as

described in steps C and D above. Finally, a set of concluding remarks is

presented In Section 4.

6
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- a.

I *1

Fig. 1. 1 X-radlograph of matric crack development in a notched [02/9o21s

graphite-epoxy laminate loaded in axial tension

7
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II. M I XED-MODE FRACTURE ANALYS I S MODELS

In this section, we shall consider the problem of a kinked crack in an

infinte anisotropic elastic plate which is subjected to a uniform tensile stress

field. The problem will be treated first by an exact elasticity formulation and

then by a finite element simulation. The purpose of the analytical treatment is

to obtain, for the first time, an exact elasticity solution for the posed problem,

from which the accuracy of the finite element simulation procedures can be

established.

Elasticity Solutions For A Kinked Crack.

Consider the kinked crack shown in Fig. 2.1. The inifinte plate is a

representation of the unidirectional laminate with the fibers orientated at an

angle 0 from the direction of the applied tension. The base of the kinked crack

is situated normal to the applied tension, while the kink itself is orientated

along the fiber direction. Our objective here is to determine the mixed-mode

stress Intensity factors K, and K 11 and the strain energ, ,elease rates 61 and

611 at the tip of the base as well as of the kink.

The corresponding problem of a kinked crack in an infinte elastic

isotropic plate has been treated by Gupta [8,91 and Chatterjee [101. In both

cases, the singular integral solution scheme was employed. Here, we shall first

address the problem of two separate cracks embedded in an orthotropic plate

one is the base and the other is the kink. Initially, these two separate cracks

are unconnected. Using the crack surface displacement derivatives as unknownsand the principle of superposition, the problem is then formulated in terms of

singular integral equations with Caushy type kernels. The resulting system of
"-

equations are solved numerically employing a Gaussian quardrature and the

collocation method. The mode I and mode II stress intensity factors are then

calculated with the relative angle, relative distance and relative size of the

9
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two cracks as parameters.

Next, by letting the right tip of the base and the lower-left tip of the b

kink touch each other it thus becomes one kinked crack. At this configuration,
;.9.

the singular integral equations are still valid; but some of the kernels become

singular at the point of connection. By imposing the condition that the surfaces

at the connecting point are now free of stress, the problem reduces to that

posed in Fig. 2.1. The details of the analysis, including the mathematical

derivat ions and solution procedures, are presented in Appendix A.

Some interesting results have been obtained for a number of cases.

Consider first the case of two separate cracks where the base crack and the

kink do not touch each other. Their Interaction in terms of fracture parameters

can be investigated by varying their orientation angle, relative length, relative

distance and the degree of anisotropy of the medium.

For example, Fig. 2.2 shows the mixed-mode stress intensity factors at

the two approaching tips b and c, as a function of their relative distance, h, for

an isotropic plate in which the two cracks are of equal size (2") and with an

angle a - 300 (see insert in Fig. 2.2). The interaction between the two "

approaching cracks is clearly illustrated by the dependence of the stress

intensity factors on the relative distance h. In fact, a singular behavior is

exhibited when the two cracks touch each other. It is shown mathematically

that the crack tip singularity at this configuration is different from being 1/2,

see Appendix A.

The corresponding problem for an orthotropic plate (mimicking a

graphite-epoxy UD laminate) is shown in Fig. 2.3. The crack interaction

behavior is essentially identical to that shown in Fig. 2.2.

With a fixed distance h, the interaction is expected to vary with the kink

angle a. Fig. 2.4 shows the case of an Isotropic plate in which two cracks of

equal size (2") maintain a fixed distance h -0. 1". Here, the stress intensity

10
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factors at the extreme crack tips (points a and d) are plotted against the angle

u. The corresponding plot for an orthotropic plate is sh, wn in Fig. 2.5. Again,

the interaction behaviors of these two cases in terms of fracture parameters

are essentially similar.

Next, consider the problem in which the two cracks of equal size (2")

touch each other at the kink point and thus become a kinked crack. Fig. 2.6

shows the case of an isotropic plate, where the mixed-mode stress intensity

factors at the extreme tips (points a and d) are plotted against the kink angle

a. The corresponding plot for an orthotropic plate is shown in Fig. 2.7. The

general features In these two cases displayed in terms of the stress intensity

factors are also similar.

As was noted earlier, one problem of practical interest is when the

length of the kink, a', is shortened as to approach zero. In the limit, the

behavior of the crack is still that of a kinked crack. This problem is relevant to

the case of a crack whicn is situated in an orthotropic plate, not aligned in any

one principal direction, but will propagate in one of the principal directions

(e.g. the fiber direction). The mixed-mode stress int( isity factors at the

initiation point of the kink can be obtained by this solution procedure.

Fig. 2.8 shows, for an Isotropic plate, the change of the mixed-mode

stress intensity factors at the kinked crack tips (points a and d) as the length

of the kink (L2) is shortened to zero. Here, the base crack has a length of Li - 2"
and the kink angle is set at a - 300. The corresponding plot for an orthotropic

plate is shown in Fig. 2.9.

At this point, it should be mentioned that the stress intensity factors

obtained for all cases relative to isotropic plate closely agrees with those

reported previously, even though our solution technique is different. Table 2. I

shows a comparison between the present results and those obtained by Gupta

19] and Chatterjee [10] for a kinked crack having the base and the kink of equal

II
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size, and kink angles of 300, 450 and 600. Thus, our results for the isotropic

plate can be trusted as being exact.

There are no other solutions for the orthotropic plate to compare with

our results, however. Since the isotropic plate represent a limiting case of the

orthotropic plate in our solution, it is believed that our results for the

orthotropic plate cari also be trusted as being exact.

Finally. the mixed-mode strain energy release rates G, and Gil at the

kinked crack tips will be calculated from the solutions of the elastic stress

field which ,Aepends on the solutions of the crack tip stress intensity factors.

The details of the calculation are again presented in Appendix A.

Fig. 2.10 shows, for the isotropic case, the mixed-mode strain energy

release rates G, and Gil and the total G.T=G1*GII at the tip of the kink (point d)

as a function of the length of the kink (L2). Here, the base crack length Li = I"

and the kink angle c = 300. The corresponding plot for the orthotropic case is

shown in Fig. 2.i I.

Fig. 2.12 is a plot of the strain energy release rate,, GI, Gii and GT , for an

isotropic plate, as a function of the kink angle, a. In this case, the length of the

kink is made small (L2 = 0.1") compared to the length of the base (Li = I'). The

corresponding plot for an orthotropic plate is shown in Fig. 2.13.

A more detailed parametric study on the mixed-mode stress intensity

factors and the strain energy release rates at the kink tip in both isotropic and

orthtropic plates is contained in [ 11 , 12].

Finite Element Simulations.

The problems, treated above based on exact elasticity formulation, will

now be simulated by means of a finite element model. The finite element

procedure employed has been developed for a previous NADC study on matrix

cracking analysis in multidirectional laminates 113]. Hence, the details of this

12
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work will not be presented here.

The simulated model is illustrated in Fig. 2.14, where a finite-width

rectangular plate containing a kinked crack is considered. To simulate an

infinite plate, the length and the width of the plate are made very large

compared to the size of the kinked crack. In this particular simulation, the

width W of the plate was 10 times the length of the base crack; and the length

to width ratio of the plate was set at 3 to I.

With these provisions, the boundary effects on the finite element

results for the mixed-mode stress intensity factors and the strain energy

release rates are minimized. Generally, the computed stress intensity factors

are more sensitive to the finite element shape and mesh size in the crack

region than the computed strain energy release rates. In particular, the total

strain energy release rate GT = G1+G 1, agrees most closely with the elasticity

solutions. Thus, by tuning the finite element shape and mesh near the kinked

crack, the accuracy of the finite element results can be c.,timized.

For the case of an isotropic plate where the kink Is made small compared

to the base (L2/LI = 0.1), a comparison is made between the finite element

solutions and the elasticity solutions for the kink tip strain energy release

rates.. Figs. 2.15, 16 and 17 show, respectively, the kink tip strain energy

release rates GI, GI and GT as functions of the kink angle, a. The corresponding

comparisons for a kinked crack in an orthotropic plate are displayed in Figs.

2.18, 19 and 20. The close agreement between the finite element results and

the elasticity results establishes the accuracy of the numerical procedure.

The finite element method will be used to simulate the test specimens

used in the experimental study, since an elasticity solution for those specimen

configurations is not available.

-13
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TABLE 2.1

Stress Intensity Factors (normalized by o) at Kinked Crack Tips.

(Isotropic Plate with Li - L2)

kink angle K/ao Present Solution Gupta 191 Chatterjee lI101

300 Ki(a) 1.3421 1.3559 1.3508

K2(a) 0.0328 0.0327 0.0325

Ki(d) 1.0949 1.0873 1.0830

K2(d) 0.6855 0.6833 0.6804

450 Ki(a) 1.2732 1.2902 1.2887

K2(a) 0.0217 0.0211 0.0208

KI(d) 0.7546 0.7463 0.7438

K2(d) 0.8450 0.8405 0.8377
p

600 Ki(a) 1.2082 1.2221 1.2194

K2(a) -0.0108 -0.0109 -0.0116

KI(d) 0.3941 0.3900 0.3822

K2(d) 0.8350 0.8319 0.8292
5,

.°

14
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Lj

IT'

Fig. 2. 1 Geometry and reference frames for a kinked crack In an inf inte

orthotropic plate.
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Fig 2.2 Interaction of two crack~s as a function of their relative

distance, h. Isotropic case with a - 3Q00.
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Fig. 2.3 Interaction of two cracks as a function of their relative N

distance, h. Orthotropic case with a - 300.
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Fig. 2.5 Interaction of two cracks as a function of the kink angle, a.

Orthotropic case with 2h/L, 0. 1.
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Fig. 2.6 Stress intensity factors (normalized by uoo.L/2) at the kink tip

as a function of kink angle, a. Isotropic case with Li -L2.
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Fig, 2.7 Stress Intensity factors (normalized by Oo L/2) at the kink tip

as a function of kink angle, a=. Orthotropic case with L1 - L2.!,
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Fig. 2.8 Stress intensity factors (normalized by bo/2) at the kink tip

as a function of kink length, L2 Isotropic case with a -300 .
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F ig. 2.11 Strain energy release rates (under ex 1) at the kink tip as a

function of kink length, L2. Orthotropic case with a~ - 300.
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Fig. 2.12 Strain energy release rates (under ex 1 ) LIL. the kink tip as a

function of kink angle, a. Isotropic case with 1-2/1-1 - 0. 1.
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Fig. 2.13 Strain energy release rates (under ex 1) at the kink tip as a

function of kink angle, a. Orthotropic case with 12/LI-101
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Fig. 2.14 Finite element model for a kinked crack i •. an infinite plate.
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methods. Isotropic case with 1-2/L- - 0. 1.
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Fig 2, 16 Mode-II strain energy release rate (under ex= I) at the kink

tip as a function of kink angle, a, by elasticity and finite

element methods. Isotropic case with L2/.1 - 0. 1.
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Fig. 2.18 Mode-I strain energy release rate (under ex= I) at the kink tip as

a function of kink angle, a, by elasticity and finite element

methods. Orthotropic case with L2/LI - 0. 1.
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Fig. 2.19 Mode-Il strain energy release rate (under ex=I) at the kink tip as
a function of kink angle, a, by elasticity and finite element

methods. Orthotropic case with L2/L - 0 .
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II I. EXPERIMENT AND RESULTS

Material and Slecimens.

Hercules AS4-3501-06 graphite-epoxy unidirectional tape was used to

fabricate 8-ply unidirectioal (UD) laminates. Off-axis tensile coupons 9 " long

and I" wide were machined from these laminates. End-tabs 1.5' long were

bonded to specimens yielding a 6-inch test section.

Two sets of coupons were prepared for test: Unnotched and double-side

notched. The set of unnotched coupons were strain-gaged and tension tested to

provide the basic unidirectional ply elastic constants. Coupons with the

following off-axis angles were tested:

8 = 00, 50, 100, 150, 200, 250 and 900.

In addition, a set of [4521s laminate coupons was also tested to

determine the shear modulus GLT of the unidirectional ply.

The set of double side-notched coupons were tested for mixed-mode

fracture. Fig. 3.1 depicts the geometry of the double si(!.-notched specimens.

Initially, the side-notches were cut with a 8-mil diamond saw to depth, a, as
shown. Under the applied tensile stress oo, a kink crack, denoted by a', is

expected to initiate from the side-notch tip and propagate in the fiber

direction. The propagation of the kink crack then provides the desired

mixed-mode fracture condition.

Since the mixed-mode fracture behavior at the notch tip is influenced by

the off-axis angle 0 as well as the depth of the initial side-notch, these

parameters were varied during the experiment as follows:

0 - 00, 50, 100, 150, 200, 250 and 900

a - 0.1", 0.125", 0.15' and 0.175".

Thus, a total of 28 mixed-mode fracture conditions were created during

this set of tests. Three to four specimen replicates were tested for each
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fracture condition, with the exception of one side-notch case (a=0.15) where
only one specimen was available for some of the off-axis angles,

I

Test Method and Test Data.

All specimens were tested under room temperture condition in a

close-loop Instron tester with a load-control rate of 4000 lbs/min. Tests of

00, 900 and [4521s unnotched coupons were used to determine the following

averaged ply properties:

EL= 21.0 msl ET= 1.5 mst GLT = 0.98 msl VLT= 0.3

The axial moduli Ex of the unnotched off-axis coupons were also

measured. Their averaged values are listed below:

0 00 50 100 150 200 250 900

Ex (msi) 21.0 18.4 13.5 9.4 6.7 5.0 1.5
'V

The critical load at the onset of the kink crack was recorded for

side-notched coupons. Post-test SEM examination of the 1 3ctured surface near

the kink point was conducted to determine the fractured surface morphology

under 500x to I 00x magnification.

Fig. 3.2 shows the experimental plot of critical stress versus the

off-axis angle e at the onset of the kink crack in those specimens having

side-notches 0.1" deep. In this plot, the average critical axial strains were

calculated using

(ex)cr (Ox)cr/Exn (I)

where Exn is the axial modulus of the notched coupon. Exn was not measured

during the experiment. Value used in (1) was calculated by the finite element

routine. Table 3.1 lists the values of Exn for all the mixed-mode fracture test

cases conducted in this study.

Figs. 3.3 and 3.4 show the critical onset stresses for specimens having
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notch depth a - 0. 125" and 0. 175", respectively. The case for a - 0.15" is not

shown because of insufficient numbers of test specimens

It is seen from Figs. 3.2 to 3.4 that the onset stress, (Oxcr, for kink

crack initiation and propagation decreases sharply with the off-axis angle 0,

but only slightly with notch depth. On the other hand, the onset strain, (ex)cr,

appears to be insensitive to the off-axis angle but sensitive to notch depth.

Post-test SEM examination of the fractured surfaces revealed extensive

fiber breaking near the kink. Fig. 3.5 presents a typical SEM for each off-axis

specimen tested (0 - 00, 50, 100, 150, 200, 250 and 90o). Fiber breaks are

visible in all cases. This phenomenon is caused by fiber nesting near the notch

region and fiber bridging accross the cracking path, an indication of strong

adhesion between the matrix and fibers.

Finite Element Simulation.

Using the finite element routine discussed in Section 2, the initiation

and propagation of the experimental mixed-mode kinked crack conditions can be

simulated. Referring to the off-axis unidirectionally reinforced composite

coupon shown in Fig. 3. 1, let the coupon be loaded by the fr-field strain ex - 1.

The resulting stress field will be highy concentrated near each of the

side-notches. Assume that the notch tip stresses will cause a kink crack to

start from the notch tip and that the kink will propagate stably in the direction

of the fibers. Of interest is when the length of the kink a' is small. The

mixed-mode strain energy release rates GI and G11 at the kink tip are assumed

to control the behavior of the small kink propagation. The values of Gi and Gil

are calculated by the finite element routine via a crack-closure technique [1 3].

These are conveniently expressed in terms of the applied far-field strain in the

form:

G, - Cl(ex) 2  GI - Cil(ex) 2  (2)
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where CI and Cll are numerical coefficients from the calculation.

The values of and the ratio for 6, and Gll (or CI and C,1 ) can vary P

dramatically depending on the off-axis angle and the sid( -notch depth. Fig. 3.6
shows two families of plots for the coefficients CI and Cl with the side-notch

depth, a, as a parameter and the off-axis angle, 0, as a dependent variable. Note

that the kink is highly mixed in fracture modes for off-axis angles up to 200.

Beyond 250, the fracture of the kink is dominanted by mode-I. The mixed mode
I

ratio, defined here as GII/G I and shown in Fig. 3.7, is found to depend

principally on the off-axis angle 9. It is almost independent on the initial

side-notch depth a.

Critical Strain Energy Release Rates at Onset of Kink.

The critical stress (ox)cr at the onset of the kink was measured
.5"

experimentally. The corresponding critical strain (ex)cr can be calculated by

mean of equation (1). These results were shown earlier in Figs. 3.2, 3.3 and 3.4

for the cases of a - 0.1", 0.125" and 0.175", respectively. Thus, by using

equation (2) and the values of CI and CII shown in Fig. 3.6 we can calculate the

critical strain energy release rates GI, Gil and GT =GI*I for each of these

cases.

Fig. 3.8 shows the calculated critical strain energy release rates G and

GTc for a = O." as a function of the off-axis angle 0. If we disregard the

experimental scatter which is relatively small, the plot shows the total strain

energy release rate, GTc, to be constant for all angles. displte variations In the

mixed-mode fracture condition. The averaged GTc in this case is about 1.8

in-lb/in 2.

Fig. 3.9 shows the calculatea*.Lain energy release rates for the case of
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a = 0. 125". Again, the behavior of GTc Is the same. Here, the averaged GTc is

about 1.7 in-lb/in2. The calculated GTc for the case of a = 0.175" is almost

identical to that calculated for the a = 0. 125 case, see Fig. 3. 10.

Fig. 3.11 is a mixed-mode interaction diagram plotted from all the

mixed-mode fracture test cases, including some from specimens of a=0.15.

These data show some degree of scatter, but the interaction diagram strongly

suggests that a criterion based on the total strain enerjy release rate GTc

would be acceptable. This conclusion is based on the mixed-mode fracture data

which consisted of nearly uniformly distributed data points in the GI I/GI ratio

range from 0 to 2.5. This range had not been achieved in any of the referenced

previous works.

Most available data for graphite-epoxy composite critical strain energy

release rates are limitted to GIC, Genrally, the measured values for Gic lie in

the range between 0.7 to 1.5 In-lb/n 2 , depending on the material system used.

In this study, GIc was found to be of the order of 1.75 in-lb/in2. This seems

high compared to most other accepted values. Recall that in all our mixed-mode

fracture test cases, fiber breakage or fiber bridging occurred in the wake of

cracking, which could account for the higher measured values for Gic and GTc.
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TABLE 3. 1

Effective Axial Modulus, Ex, (in msi) for Test Specimens

Off-axis angle Notch depth, inch

0 0.100 0.125 0.150 0.175

00 20.6 20.4 20.1 19.8

50 18.1 17.8 17.7 17.4

100 13.3 13.2 13.0 12.9

150 9.3 9.2 9.1 9.1

200 6.7 6.6 6.6 6.5

250 5.0 5.0 4.9 4.9

900 1.5 1.5 1.5 1.5
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Fig. 3.1 Net section of the tested specimen geometry
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Fig. 3.2 Critical stress and strain at onset of kinked crack. a = 1"
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qg3 Photomicrograph of fractured surface near k ink point A

specimen of O00, a -0 15" (above), and a specimen of 0 - 0

a 0. 1 (below).
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IV. CONCLUDING REMARKS

In this report, an effort was made to study the mixed-mode fracture

behavior of a kinked matrix crack in graphite-epoxy composite materials.

Previous efforts in determining fracture quantities, such as the stress

intensity factors or the strain energy release rates, have been based on either

crude analytical models (e.g. simple beam theory) or finite element simulations

whose numerical accuracy could not be adjudicated.

In this study, the fracture quantities K and 6 were obtained both by

solving the problem of an infinte orthotropic plate containing a kinked crack

exactly and by a finite element routine. A comparison between the exact and

the numerical solutions allows the finite element shar:h and mesh size to be

optimized to obtain the best results for this class of problems.

Having done so, the f'inite element routine is then used to simulate a

similar class of mixed-mode kink crack in notched finite plates, the specific

problem being the off-axis unidirectional tensile coupon with double

side-notches. The finite element analysis must be employed because the

complex geometry of the test specimen would render an exact solution

impossible

In the experiment, we have designed a specimen which is simple to test

and i s versatile in geometrical variations This provided some 28 mixed-mode

fracture condItIons covering a wider range of GI I/GI ratios (from 0 to 2.5) than

previously investigated. Thus, a more definitive conclusion can be reached

regarding mixed-mode matrix crack propagation. Specifically, the test results

suggest that the total strain energy release rate GTc is a good criterion for

mixed-mode matrix fracture in AS4-3501 -06 graphite-eoxy composite.
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EXACT SOLUTION OF A KINKED CRACK IN AN ORTHOTROPIC PLATE.

Introduction.

This appendix is concerned with fracture analysis of a kinked crack in an infinite elastic

orthotropic plate. It is assumed that the plate contains a through-thickness crack of

initial length L1 , which makes an angle 0 with one of the principal direction of

orthotropy. When the plate is subjected to a far-field uniforn tensile stress normal to -.

the crack, the crack will kink and propagate self-similarly in the 0 direction. The result

is a kinked crack propagating in mixed modes, with the degree of modal mixture

dependent on the angle 0 and the ratio between the length of the kink, L2 , and the i

length of the main crack, L1.

To determine the parameters relevant to mixed-mode fracture at the tips of the kinked

crack, the problem is formulated in terms of singular integral equations with

generalized Cauchy kernels. The resulting system of equations are then cast in a form

suitable for numerical solution by a Gaussian quadrature and the collocation method.

Analytical expressions for the stress intensity factors, k1 and k2 , and the strain energy

release rate, G I and Gil, at the tip of the kinked crack are also obtained in terms of

solution variables.

The problem is solved in the following manner. First, we consider an infinite plate that

contains two separate cracks as shown in Figure 1. Here, two sets of reference frames

are used to describe the two-crack geometry. Let the applied far-field stress 0o be in

A2
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the Y2 -direction, the base crack of length L1 be on the x2 -axis, while the kink crack of

length L2 be on xl-axis. The kink angle 0 refers to the angle between x1 and x2 . The

two cracks will become one kinked crack if their approaching tips meet at the common

origin of the two reference frames. That is when xb and xc become zero in Figure 1.

:a..

a.1111110OpJ X

Xa X b 2

fiber

Figure 1. Two-Crack Configuration in an Infinite Plate Under Uniaxial Tension.

The two-crack problem can be represented by the superposition of three individual

parts, shown in Figure 2. The first part is the plate without any crack under the external

stress Go. The second part is the plate with only the base crack of length L1 loaded by

uniform normal stress acting on the crack surfaces. The crack surface normal stress is

equal and opposite the stress that exists at the same location in the first part of the

problem. The third part is the plate with only the inclined (kink) crack of

A3
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length L2 . Similarly, on the surfaces of the crack uniform r ma and shear stresses

are applied with their respective magnitude and sign equal and opposite to that

existing at the same location in the first problem. The last two paris of the problem are

known as the perturbation problems.

11 1 110 00ll l~"Uo

0

-CIO -o~s in 8cos 8

+ COS 2 0

perturbation
problems

Figure 2. Method of Solution of the Crack Problem by Superposition of a Plate without

the Cracks Under Uniaxial Tension and Perturbation Problems Under

Negative Stress Imposed onto Crack Surface.
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- Since the solution to the first part of the problem is trivial, w. are interested in solving

the two perturbation problems.

P

Section I treats the perturbation problem in which the inclined (kink) crack lies along

the principal axis (selected as the fiber direction) x1 . The problem of the base crack

situated along x2-axis is treated in Section I1.

Superposition of the two-part solution for the two-crack problem is treated in Section

Ill, where a set of singular integral equations are formulated. In Section IV, we

descretize the singular integral equations suitable for solution by a numerical

collocation method. Expression for the stress intensity factors that exist at the four tips

of the two separate cracks are formulated in Section V.

The original problem of a kinked crack is treated in Section V by employing the stress

field solution of the two-crack problem obtained earlier. Here, we let the two

approaching tips to meet at the common origin of the xl-y1 and x2-Y2 frames. In the

limit however, some of the kernels in the singular integral equations become singular

*, themselves. Conditions compatible to the new situation are then formulated, and the

resulting system of singular integral equations is obtained.

These equations can be discretized in a form suitable for solution by a similar

collocation method. Expressions for the kink tip stress intensity factors are thus

!. obtained. This is presented in Section VII. The definition of the normalized stress

intensity factors is given in Section VIII.

A5
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Finally, expressions for the mixed-mode strain energy release rates are formulated in

Section IX.

I. Formulation of the problem of the crack along x1 .

For the inclined crack, which is situated along the principal direction x1 , the stress field

is governed by the biharmonic equation:

a 4 418'
aF_ a'F 1  a4F1

a22  4 +(2a 22 +a66) 2 a2+a -=0 (1.1)
ax1  axlaiY aY1

or

4 4 4
1 aF1  aF 1
+ 2 

+ I -=0 (1.2)
axI  ax1ay a

where

a1 1  2a12 +a66Az = 2 13
* Ia 22  2 a22  (1.3)

and
1 VLT 1 1

a, LL at1 ELL ;a2 a LT

ELL, ETT, GLT and vLT are the engineering elastic constants for the orthotropic

material in its principal frame.

Using Fourier transformation the stress function is defined as:

1 r (syl -iS~
F1(x,y 1) = J 1(sy 1) e'ds (1.4)

A6
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Substituting (1.4) into (1.2), we reduce the 4-th order Partial Differential Equation

(PDE) to 4-th order Ordinary Differential Equation (ODE) with constant coefficients as

follows: 2

Pd 4 2 d2 - +s4 =0 (1.5)
1dy1  2 dy12

The solution of (1.5) may be written in the form:

(s,y1 ) =A(s) e'15 + B(s) e" '1+ C(s) e 'AI + D(s) e Y1 (1.6)

where col , "2 are the roots of characteristic equation

P 4 2 + (1.7)

where it is assumed that Re(col) > 0 and Re((02) > 0.
fp

By taking the exponetial behavior function for s - cc the stress fjnction becomes:

+|

F(1 y)=..J[A e< + B ellleX1ds (1.8)".

1, I oilsly + 8. lsly] e-isxl ds(18

F Cxey )'sl + e + De ds (1.9)

.'

where A,B,C,D are functions of Fourier parameter "s" to be determined by the
t

boundary conditions. Note that superscript of yl "+" stands for positive y1 and "-" for

negative yl.

It is known that stresses are the same on positive and negative face of the crack. This -'

can be stated in the following mathematical form:

At

A7 ,
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F,(XO*) FI(I'O(1.11)

Then, the stress function becomes:

4-

-~- Ae'lISY o B e~IIl e I ds (1.12)

F ( 1 1  f~ [(A c1+ c)e""A + (A c,- Bc) "'Aeixds (13

where
W +W 2w 2w

1 2 (I.1I3a) c2  - 2 (1.1 3b) c3= 1 (I. 13C)

Thus, the crack surface stresses can be obtained from the stress function:

s . 2S [Aw2e- BW2 e 1e')ds (1.14)
xy 2n f 1 2 5.

4"

a~= s2 [Ae- ( IsIl4 + Be-"sI'] e-S ds (1.16)

~-=.js2 (Ac + Bc2)e II + (Ac - B)w~' e-sxl ds (1.17)

ISY-S

T.5-

Cr() : i 2 [AceI+ B e'X+(]e- c)e~'X ixsd (1.18)

.A88
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A more convenient form for the above can be obtained in terms of the crack surface

displacement derivatives as unknowns:

r-(x1) -[u(xI 10-u(xo1,o ) (1.20)
I ror x< x < xd

t(x 1) = .x---[v(xo )-v(xO)] (1.21)

where u and v are shear and normal crack surface displacements respectively.

To relate the displacements and their derivatives, the material stress-strain relation

(Hooke's Law) is applied:

Cx(, = a1 10"a Y6+ a12 'y (1.22)

c c = a12 a6+ a22o (1.23)

Upon substitution of the expressions for stresses (1.14-1.171, we obtain from (1.22),

the surface strains:
+m %

(+' =1 2 (a , AW2e_ ilsly + Bw 2 e" 1l"

-a12f Ae- & lSlYI+ Be (ilslY I~e Sisxds-:

C JI r2 (a, (Ac,+ BC,))(0e 'Ilslyi_ (Ac, - Bc1) we cJSlY11
S2n 21 1

-a a 2[(Ac1 , BC2)e ""sly'- (Ac. - Bc) e (' lslvi]}eisxIds

or

'

(2) a -WlSl; + B, , 2_ a Bix)j e I ,
X J2"2) e + B(a1211 -a12) e ]e ds (1.24)

A9
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1, 2n s 2 [(A c )(aw L - a12) 1" 'x= ".'T' +JS ACalz

+ (Ac 3- Bc )(a11 o2 - a12) e4'l'] ds (1.25)

Then, the surface displacement derivatives in (1.20) become,

It(xI) = rm [ C - (1.26)

*Similarly, by substituting (1.14-1.17) into (1.23) we obtain:

CH+) =  2 2 a -01 1l1y 2 - zSlVy* e-isy) s
,1 I [(a 12 1  2 a) e + B(a12 2 -a 22) e6]2el '

H 2  + Bca 2 _asy

(AC Bc)(a 2 _ 62 IslVI e-isyxid

(A3 2Bc2)(atzw- a 22) e ] ds

By integrating the expressions for yly, with respect to yl, an expression for the

normal displacement v can be obtained:

+" A(a aW 2 azz -tsv B(a (1z z) 2 -a zll ei
+ 1 2 A~ 12 1- a22) -"15Is ~ Ba 2u - a22) C)IY; SXv=.Js2 [ + e e ds

W"-sl -W2Sl

1 +,, (Ac . Bc2 )(a12j,  - a22) 1lSlyls' 2 1 2s2[ e IS

2aS w WISI
(A c3 - B C 1)(a 12 2 a 22) e l W2 dVis ) d s

W 21SI
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Now we diterentiate v with respect to x1 and obtain S

2 "

1 3 I A(aU w I, a, 2 ) " ,sly

ax, 2 I -n eI

B(a-12 W" a ) e e X, ds (1.27)
w 2

5.

a' -is (AcT+ 2 ,llv
"--"  -_. 2s) (a 2 w, " a22 ) e ,slyl

(AC) - Bc) - 22) sYi -,sxe ]e ds (1.28)

Substituting (1.24) and (1 25) into (1 .26), and (1.27-1.28) into (1 21), we obtain:

1{l)Y 1  v,2shv; 2

f(xt)=im I. e "(Ac,+ Bc2)e ](a11w I-a 12)
2n. .2n

-I4 2 lsly 2a ds (1.29)
+ [B e - (A c , B c ) e ](a .i a "( .

"1 sly
+ A e + (Ac +Bc2 ) et ~xI)= lim - - - (a W 2_-

t2(x1 2= - Ir Si~( 12
2 a22) +~

"')z Isly; w 2 ISlyM:#B e + (Ac 3 - BC1) e 2 isx,

+ (a CI)- a22) e ds (1.30)

or

1 s 2  2
fI(x 1 ) = - s [(A - Ac I - Bc 2)(a11 w - a 12)

.a

2 -Isx,
(B- Ac3 + Bc )(a, 1 o2 - a,2 ) e ds (1.31)

All
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2(x1) 1 'i s 3 (A+AC1 + Bc2)(a 2w1 - a2 2),, 2(Xl)= [S W,

(B + Ac3 - Bc )(a12 4 - a22) eisxs

3l 2)1e- ds (1.32)

Upon substitution in (1.31-1.32) for c1 , c2 , c3  from (1.13 a-c), the following is

obtained: -,,x

1 r 2
t(x 1) = a 1(Aw 1 + Bw2)(w1 + w2) e ds (1.33)

-a..• -~~21 W2( 2I 3 ~+ 2 e-

2(X1)= 2  - a2 2(A + B) 2 exi ds (1.34)
"0 1 2

The inverse Fourier transformation of (1.33) and (1.34) gives:

1 istl
Aw +Bw2  2 t) e dt1

1 2a11I(W 1+W2)s ,

A + B=- 1 2 , %is 3 2a -Is-E f,( =t,) e dtiN
is 3 2a 22(U)I + W2)

with A and B taking the forms:

= 1 1 i 2  ist1At) e dtI dt (1.35)3 2 2 ts2 2a i 2a22(w1s- w2) ,W

x8=- rr IsI 'Sd ,,
-1 1W D2( 1 2) rrX-

2 2 2 jt(11)e d21  2 2 'f i(t) t (1.36) -.

s211(w1 - 2) ,is2 22(W 1 - 2) X%

Equations (1.35) and (1.36) can be substituted in (1.14), (1.16), (1.18) such that the

A12 I,
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crack surface stresses are expressed in terms of fl, f2. After i,tegrating with respect to

is" and applying:
a2,

W2W2 = 22
1 2 a 1

these stresses of the perturbed problem are obtained as:

1)~x 2 (= +°z~t x+Y 1:1)"x1 1) X= - --£3 .. ... -

axC.* JI n(2 2 2 2 + t 2

rt(t 1)W2y 1 + Y(t)(lt - xI) W2
2 ..2 ( }2 dt1  (1.37)

1+ (:1 - x ) -

t1  - x1  ,4,

) t1(ti) Wiy1 + 2 (t) -

.4 CTIY= 2n (W-w 1 2J2 2 2 2-W )iW Y +(t1 -X)1 2 Xl)

t (t ) 2y , +rF(tO) --
,

2 22 2 dt1  (1.38)"

Wll+ (t11 - Xi)

1 1 :1)wU) ( t, -x) - f2(t11) 01y,
2 2 2 2 2f t

(t)W 2 (1  - -(tl)) V 1)wly " I o-
I'( l (2(t "X ) " '( l ¢2 1}dr1 (1.39) "

A13
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II. Formulation of the problem of the crack along x2 .

For the horizontal crack, which is situated in the x2 -Y2 frame and is making the angle

8 with the direction of fibers, the governing field equation is a general biharmonic

equation for anisotropic materials in the form:

,a Fz a F2 a4 F2 a4 F 24 Fz 2

4 2b26 3 + (2b12+b66) 2b 16 + b 11 4 0 (2.1)
ax 2  ax2ay2  ax 2ay2  ax2ay2  ay2

where
bl =Ia l1cos4 8 +(2a 12 + a66)sin 2 8 cos28 + a2 2 Sin48 4

b4 .2 2 4
b22 =a 11 sin + (2a12 + a66)sin 8 Cos28 + a22cos 8

2 2
b12 = a 12 +(a 11+ a2 .2a 12 -a 66)sin acos 8

2 2
b66 = a 66 + (a,1 + a 2 2 - 2a 12 - a 66)sin28 cos28 .-

2 2 1
b 16 [a 2 sin 8 - a1 cos 8 + (2a 12+ a 66)co,'.] sin28

2 .2 1
b26 =[a2 2cos28 - a11sin 8 -(2a 12+ a 6 6)cos28 sin2,

Let's define:

2b 2b +b 2b b
=2b * P2  bP3 bF ' P4= (2.2)

2 2 b22 22 b 22

and after substitution of (2.2) into (2.1), the 4-th order PDE is reduced as follows:

a4 F a4 Fa4 Fa4 F a4F2FF aF2 aF 2  aF 2  (.+ 2 0 (2.3)
ax2 x ~ axz ayz axz aY3 8 Y4

a2  a 2 ay2  a 2 a>2  X2 >2  a>2

Assume the solution for the stress function F2 in the following form:

A14
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F2(X2, y2)= %- J = Ck(S) e e ds (2.4)
k= I

then, the following characteristic equation is obtained by substituting (2.4) into (2.3):

p4 r - i p3 r 3 - pr 2 + iP1 r + 1 = 0 (2.5)

The roots of (2.5) are of the general form:

r1 =a+ib, r= c+id,

r4 =-a + ib; r 3 =-c + id;

where a,c > 0 is assumed.

Thus, for Y2 > 0, the stress function F2 can be written as:
0
{ I {+ib)yiS (c.*id~yis e-i,-

o2 -2

r (a-&ib)ys (c44d)yes-i~

. F2(x 2 , y)=- J[ C1 e +C3 e e ds

44

0

Define new constants as follow: dt

A's) 1 if s< 0  (2.8) B(s) C 3 i s< (2.9)
) C2 ifs >0 C4 if s>0

then (2.7) becomes:

1+ -&lsyj.iby* -Clsly;+ idy? -ix-s
F2(xz,y;)= :+ J A e + B e e ds (2.10)
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Similarly, for Y2 < 0, we have:

0

+(C' ex2Y)
b{ vzs  (c.idl yzs + e' 3e s ds (2.11)

0

We then define the following constants:

SC2 if s< 0 (2.12) D(s) C 4 if S < 0 (2.13)
C(s)= C it s>0 C3 if s>0 (1

and (2.11) becomes:

F2(x2 1 Y2) 1 2n e +De 'e ds (2.14)

Since the stresses are the same on the positive and negative face of the crack we can

state:

F2(x2, 0') = F2(X2, 0") (2.15)

--F 2(X2, 0') 2-F(x2,0) (2.16)

Satisfying the above conditions, the stress functions (2.10) and (2.14)

become respectively:

+ 1.JslyZ:+ibY Cclslyj+idy's IVF(+ -[Ae +Be .ee ds (2.17)

A 16
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ID S4SIe+lyz + ibY'F2(X2, Y) = J[(S A + S2B)

BclsIy2 +iWye e-ilxzs
+ (S 3A+ S4B)e ]e ds (2.18)

where
-;!Isl (c +*a) + is (d -b) - 2 a sl (.g)"lIsl(c-a)+is(d-b) ;(2'la) S3= (c1a)+is(db)' 9c)

-IsI(c+a) + is(d-b)

S 2 = 2 clsl (2.19b) S4 = is( +a) + is(d-b) ; (2- l9d)s2=Isl (c -a).+ i s (d - b)'I c-a +F d-b

The second derivatives of the stress function give us the crack surface

stresses:
e(+]S) I [2-ssly'+iby, s"

-. = I A(-alsl + ibs)e

2 eClsly+Idy2s bZS+ B(-c IsI idis) e e ds (2.20)

{ 1 r[(  e.1s~y2+ibvzs'
T J[(S1 A + S2B)(alsI + ibs) 2e

2 c~slyj+idye I 2
+ (S A + S4B)(cIsI + ids) e l ] e ds (2.21)

34-

([+) -1 rs2  e.Jslyz+iby s -clsIY,+ idy s -"x~

(7yy : Js [A e+ B e" ]le 'xz ds (2.22)

-1 1JY 2 + ibyes
- -1 [(S IA + S2B)e

+(S 3A + S4B)e IV2'y] e' ' ds (2.23)

A17
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-04Sl~j+iby~s
=. - Jis [A(-alsi + ibs) e

-cls)ies -xly' + dy .

+B(-CIsI+ ds)e le ds (2.24)

=-'-z 2 is[(S1 A + S2B)(aIsI + ibs)e l iyzY

+ S 3A S4B)(cIsI + ids)e ZyZS e ds (2.25)

Similarly, as in Section I, the discontinuity at the crack is expressed as a

set of crack surface derivatives:
a4

(x 2) = *- u(x2, 0+)- u(x2, 0)] (2.26)

for x < X < X
a & 2 b

14( X2) - 2- [ Y(X2 ' +)
" Y(X2 ' 0) ] (2.27)

lx2

The stress-strain relations (Hooke's Law) in the x2 -Y2 frame are:

- b 1 1 o' .b 12o'7 16'xy

Cyzz bl azx + b22yy + bz6xy
Yz =b 12~ x+ba +2Y2 26T4

Upon substitution of the expressions for stresses (2.20-2.25) into Hooke's

Law, the surface strains are obtained. Then, integrating the Cy2y2 with

respect to Y2, an expression for the normal displacements is obtained,

which is differentiated with respect to x2 and substituted into (2.27). The

expression for ex2x2 can be directly substituted ir..j (2.26). Finally the

following expressions are obtained:

A18
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t b A[(-alsibs)- S,(alsl + ibs)2
- s 3(csI + ids) 2 +

B[(-clsl + ids)2 _ S2(alsl + ibs)2 _ S 4(cIsI +ids)2 e-il" ds (2.28)

1 s~ 1___ S' S3  +t4x ) = -i3b22  A[ - libs alsl + ibs clsl'+'ids-

-clsl+ ids als ibs ss Idsds (2.29)Iis

The inverse Fourier transformation of (2.28-2.29) gives:

A PI + BP 2 = j I'3(t)e dL
X&

(2.30)

AP 3 + BP 4 = f 4( t') d"

X&

from which we find that:

, &

2 iSt -
.pp4 '~y dt2  pip4 pp .J 4 (t 2 )e d~z  (2.31)

-P3  ! ist2  P 1  1J 1 2 eitz '

8= y 3(t)e dt2 + p4(ip-t d1 (2.32)1i 4P 3X,1 2" 2P3 iX,

A19
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where

2 2P =sQa P =sQ a ~ 0 P1 = 2 2; P3 ; P4 S Q4'

and

+
Ql= 2b 1 1[a(a + c)- ia (b- d)] for s>0

(2.33)
Q1 = 2b, [a (a + c) + ia(b- d)] for s<O

Q2 = 2b1 1[c (a +c) + ia(0-d)] for s>0

Q 2= 2b,,[c (a + c)- ia (b- d)] for s<0 (2.34)

0 += 2a[(db- -c -ac) + i(cb +ad)]b for s> 03 2  2)(C + d2 22
(a + b)( d

(2.35)
22o=- 2a[(d +c - db + ac) + i(cb +ad)]

(a + b)(c + d)

2 204 2c[(a +*b -db +ac) +i(cb,+ ad)]b fo s>
Q42 2 2 2 b22 fo s>0

(a + b)(c +d)
(2.36)

= -2c[(db- a -b2- ac) + i(cb +ad)]b for s<0
0=2 2 2 2 2

(a + b )(c +d) 2

Substituting the above for A and B into (2.20), (2.22) and (2.24) the stress

field is obtained:

R, f3(12) - R2 f4() R3 f4(t) - R.4,-(12)

y 2(a +ib) +i(X2- Xz) y(c+id) +i(y- Xz)

f R7 f( )- R 8 Y d (2.37)
Y2(a-ib) - (2- x2) y2(c- id) - (2- x2)

A 20

d%. --, . . . . . .. . d - o



NADC-87133-60

1 x 7 R9 f3(Y' -RioY + A11R 4() -R12Yf(2)y z le 7MI Y2(a+ib) +i(t- X2) y2(C+id) +i(t2- X2)

A3r3() -A (t) 14 A15r() -R 3(t1)5 d
Y 2(a-' b -(Y X2) +Y 2(C-id) - y( 2 +d) (2.38)

R2  RI3( AN - 4(1) R3f 4() AI- R2,Y(1) Y

where R's are coefficients in the form:

R1 = -(a+ib); P4 2 (c+id),

05 05 ,

Y2 04( +YX2

+ Y2 (a+ib)2; 
5 -(-a ib)2;

whr ' r ofiints inthfrm

05 05

io 2 ' 2 2R =- (c + id) R 6 =--- (-a + ib)
05 05

012 2

9 13

P7 =- (-c +id) ,  ,,,,(-c+ id)

A215
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RIO +

Tas

Q- +5

RI1 1
a +

Q 5 5Qa 4

17- a 2 a2

Q5  Q-5
IQ4 -

a R (a + ib)

QaQ

21 ==Q2

P22 (- a + ib)

R1g ( + id); R23 + id);

R 'Qio 3(c + id); A 2 4=-(- c + id);

R20 = aQ2 Qs +

Note that the stresses in the first problem (1.37-1.39) can be written in the form

analogous to those in the second problem (2.37-2.38):
',I

1 x. TI fl(ti) - T2 f2(t) " T3 f2(t) - T4 f1(ti)

X, = - y l - t"- XI) yIWz + i(tI- X)

T5 f1(t)- T6 f2(t) T7 f(t) "TS ft(t) dt1  (2.40)
y w - i(tI- X1) YI 2  

" i(t I x1) "

A.-_

A 22 :
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1 v T9 t1(t1) - T10rf2(t1) T11r2(t1) - T1 r()
c ,= - r i +2l~l

"YYi 2n Jx 1W I + i(ti- xI) y1 w2 ' i(t I - XI)

+T1t(t 1) - T14t2(t1) T23t2(tl) - T24frI(ti) d (2.41)

ylx 1) - i(t - x 1) d11- (l I

where

yTw1 Ts I- x 9 1 3) y 1 2 T L6~- 1

2(W2 - , a 2(W2 -~w W2 a~1 -

T== 1 2== 12

-T2 T6 = 2(W 2 -)aT 10 =T14 = 2~ W2)
1 22) W

2

T=T= ~ 2__ 
__

2( 8 ' a 1 152w (W2 - W2) a
1 2 112 1 2 11

iW
-T 2

3~ 2( 2

T17 = T21  iW 2( 2 T20 T24 - 2 W ( 2 )a

2 W 2) a1  2 (2 W)

T18 =T 22 T1  T23 = 1(2- 2

A 23I
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Ill. Generation of Integral equations.

I

By superposition of stresses from the two problems, we obtain solutions for a plate with

two cracks. Thus, we proceed with the coordinate transformation in order to express %

the total stresses in one common coordinate system. If the total stresses are expressed

in x1 -Yi coordinate system, the transformation is given by:

x2 = x cos8 - y, sine

y2= x sinG + y, cosO (3.1)

and the stresses of the second problem, when expressed in xl-y1 system are given

by:

a' = + 2  cos28 + r sin28 (3.2)
a + Oy a - av

' -- cos28 -r sin28 (3.3)
Y Y 2 2 XzYz

a -a
X,~ Y, 2 sin28 + r X22cos28 (3.4)

and the total stresses are given by:

T

T
ay =y + 'y, Y 1  (3.4a)

T+
X , = 1XlY, Y/

Similarly, if the total stresses are expressed in x2 -Y2 coordii._te, the transformation is

given by: i
x1 = xz c s 2 OS Y2 sine -

(3.5)
yj =- x sine + Y2 cos"

A 24
I
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and the transformed stresses of the first problem, when expressed in x2 -Y2 are given

by: a' - a+ cos26 - T sin2e (3.6)

XZZ 2 2x,

a I- 2 Y - a sin28 (3.7)
YY=  2xx 2 1,,1

2 y sin28 + Tycos2) (3.8)

Thus, the total stresses in x2-Y2 system are:
T

a -a +aeY'z = Y'z Z Xz
T -

aYY a y (3.8a)

-T '

XZYZ X2Y2  XZv 2

Consequently, the transformed stresses of the second problem, when

expressed in x1 -yl frame, (3.2) to (3.4) have the form:
'a

a' = 
HI f3(t2) + H2  (r4( 2)

X, Y (xlsine + y~cos8)(a + ib) + i(t - xcos8 + ylsin8)

H3 t3(t2 ) + H4 r4(t2)+

+ (x~sin8 + y~cos8)(c + id) + i(t - xlcos8 + y1sinB)

* ~H5 1 3(y) + H6 t4V) __

(X sInB +. y~cos9)(a - ib) - i(t2 - XIcos9I + y1sinG)

+ H7 I3(12) + Hg r4(12) Idl (39)
(x~sine + y~cosG)(c - id) - i(t2 - xlcosO + y~sine)

A25
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where

H, - R. P + P9 + (P, - R9)cos28 + 2R17sin29]

H2= [R +A1 +(R2-Rio)cos28 + 2 18sin28]

H3 = 2 .[ P4 + AP12+ (R4 - R,2)cos28 + 2P20sin28]

1 4 R3 + A11+ (P3 - P,1 ,)cos28 2P19sjfl2B ?
H= + + (R

H5 j[P5 + 13+( 5 - P13)COS28 + 2AP21sin20]

H6 - R~ 6 + P14+ (P6 - RP14)cos26 + 2 P22Sin~ee

H 7 = AI M8 + 16 + R- R 6 )O~82 24s if28]

He=~ 2P 7  R15+ (R7 - RIS)cos28 + 2R23sin2e]

and

1 Hg t3(t2) + H I J 4(t2)

vi= (x~sin8 +y~cos8)(a +ib) +i(t2-x~cose +y,sinB)

+ (Hsn H11rf3(t) + H1 t( 2
(siB+ y1cose)(c +id) + iQ - x~cosG + y~sine)

(3.10)

+H 13YY(t+ H 14f4(t)
(x~sina + y~cose)(a - ib) - i(t - x~cos8 + Y~sine)

+ ~~H15 3(t2) + HIJ4( 2) Jt

(X~sinB +y~cos8)(c - id) - i(t2 - x~cos8 y~sine) d

A 26
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where

'117S

Hlo0 - 1{I P2 + R10,- (P 2 - R10)cos28 - 2R13sin28

Hll= -. j P4 + R12- (R4 - P12)cos28 - 2P20sin28]

H,--[R +R,-(R-)cos28-2Rsin28]
12 3

H13=.[ RS + 13 - (N - P13)cos28 - 2R 21sn8

H,4= - P6 +Ri 4- (R6 - R 4)cos28e 2R 22 -. 2

H15=--I[R8 +R, 6-(R,- P16)cos2 - 2R 24sin28 I

H1  R (P -P)cos28 + 2P 3Sin2O

and

rX HrA(Y2 +H,8r4(t2)
a~Y 1 2mJ (x~sinB y~cosG)(a +ib) + i(t -x~cosO .y~sine)

H19 t3(t2) + H2 t()

(x~siflG + y1cosB)(c + id) + i(t2 - x~cosg + y~sinG)

H 21r3 Y2 + H22t4(t)

(x~siriB + y,cosB)(a - ib) - i(t2- x~cos8 + y~sine)

+ H23 YYt2 + H24 r4 t2  It
(X~sinS y,cosB)(c - id) - i(t2 - x~cos8 + y~sin6) 't2

A 27
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where

H1 '-AR(9  - M)sifl~ + 2R17cos28 I

H19 - -,J(P2 - P10)sin28 - 2R19cos28 I

H1 =(R I~( - R12)sin2G + 2R20cos28

H~21 = J.(R13 - R,)sin2e + 2R29c0s28]

H214(Rq -R)Si28 - 2P1cos28]

H24  is- i R 7)Sin2O + 2R23Cos2G

Similarly, the transformed stresses of the first problem, when expres3sed in x2-Y2

frame, (3.6) to (3.8) have the form:

I3 r(tJ) + G2 t'2(t1)
2nx(-x nM +y2COSO)W 2 + i(tl - X2COSB -Y2sin8)

G3 r1(ti) + C4 t 2(ti) (.2
(-x2sinG ..y2 COS)W2 + i(ti x2COS8 -y 2SinB) 5

+ G7 f1I(t) + G6 tO1  ___ d

(-x sin8 +y2cosO)w 2 , n ~ 8 82 in)

A 28 2I
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where

G,= T, + Tq+ (TI - T9)cos28 - 2T17sin28]

02 - T2 + TI 0 +(J2 - T1 )cos28 - 2T18sin28l

= -3~ T4 + T2+ (J4 - T1 )cos28 - 2T2,sin26

Q4 7 T + TI + (T3 -I, )cos28- 2T gsif26l
1=fI31

f .~I T5 + T13 + (J5 - T13)cos28 - 2T2,sin26]

a =-i~IT6 +T14 +(T6 T)cS -T 2 s1e

G - .[Te + T16 + (Te - T,,,)cos28 - 2T2 sn8

G8 -f + T15  J ( 7 - T15)cos2a - 2T2 3sin28]

and

rl G 9r1 (t1 + G10r2(tl)
ayzyz (- J it xcs8ysi8

X L (- 2 in +y2COS8)W 1  't - -2OOy2iB

G11r1(t1) +G,2t2(t1)
(-X 2sinO i-y2COS6)W 2 + '01 - X2COSO y2SMn)

G1 0)+ G14F2(tl) (3.13)

(.x sin8cOs8w - i(t1 - x~cosB - y~sine)

+ G15t,(t1) + G,6t2(t1) -1 dt1
- 2 sinO +y2CoS6)w 2 - i(t1 C x COSB -y 2SinB)J

*~ A29
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where 1l
G9 = .![ T + T9 -(T1 -T,)cos2B+2T1 sn8

G10=-!-T2 +T10-(T2 -T10)cos28.2T 8 sin28]

oil= -. 4 + 12 -( 4 - T?cos28 2T 20sin2e1

G12=.--.[T 3 +T1 - (T3-T11)cos28+2T19sin281

G,3= -[T 5 +T13 -(T5-T13)cos28+2T 2 sn8

0 14,z--![T6 +T14 -(T 6-T,4cos28+2T sin28]

ls=- [T+T1- (TO-Ti 6)cos2B+2T 24Sin26 I

G16=-[T7 +T15 -(T 7 -T15 )cos2e.2T23Sin28]12

Vnd G l7t1I(tl) +G1l8 2(tl)

2n JI(-x sinS +Y2COS 8)w I + i(t1 x2COS8 -y2Sin8)

G1 t1(t1) + G2t2(t1)
+ 

1

(-x sin6 +y2COS6)Uw2 + i(ti - x 2cosB -y.sinO)

+ -~sn 21 f( 1  22f2(ti) (3.14)
(- iO+Y2COS )W1  i(t1 - X2COSG -yZSin 8)

+ (xsn 23 f1(1) + G24 f2(t1)1 t
(- iB+y 2COSB)W2 - '(l- X2COS6 -2 ysinG)J

where1+ 017=7 f(T -T,)sin28 +2T 17cos28]
11

G,8 . f(Tj 0 -T2)sin28 - 2T18COS28

G - (T T4)sifl28 - 2T2 0cos28J
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Q [.~.(T3 -T, )sin28 +2T 19,cos2B]

G21 , [(T5 -T 13)S in28 + 2Ttcos28]

G 22rn=.[(T 14-T6)sin28 - 2T, 2cos2G]

So, the total stress field for the infinite plate with two cracks is expressed by the stress

components either expressed in x, -yj frame:

T I T1 t(t1) -T2 t2(tl) T3 r2(t1) -T4 F1(t1)

* ~~~Tft1(t1) -T6 t(t 1) T7 t( 1)- T8 t(t 1)1

yIW1 - i(ti- XI) YI(02 - i(t- x1)J

H I1 3(12) + H2 1 4(12)
* ~2nJ~(X~sinG + ypcsB)(a + ib) + i(t2-x~cosG + yisinB)

H3 FA(t) + H4 1 4(t2) (3.1 5)

(X sinS + y~cosB)(c + id) + i(t2 - x~cosO + y~sinB)

H5 r3(t2) + H6 t4Y _____

(X~sinB y~cosB)(a - ib) - i(t2 - x~cosO + y~sin9)

+ ,7 VY~ + $ 14 , I i

(x,sine +. ypcs8)(c - id) - i(t2 - x,cosO + y,sinG)
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T 1 Tg r(t,) -T10r2(t,) T11r2(t1) - T12f1(t1)a, = ++~Y,' yTa1 J l I I- XI) ylW2 + i(tl - XI)

T 13fl(t1) - T14f2(t1) T15r2(t1) - Tj 6t1(t1)1
+ dt

yluw1 - i(t1 - x) yw2  i(t ~ I 1

H9gr 3(12) + Hj0r4(t2)

2n (x~sinO y~cos8)(a +ib) + iQ - x~cosO + y~sinO)

H11t3Q ) + H1 r() (3.16)

(xisinO + y~cosG)(c + id) + i(12 - x1cos8 + ylsinG)

H13f3(t2) + H16V(1)
+ d

(X sing + y~cosB)(a - id) - i(t2 - x~cos6 + y~sin6)
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T 1 X" [T 171 (ti) -T18t2(t1) +Tlgr 2(tl) - T2j1I(1 1)

x~y1 J I ~ w1+i~t1 x1) yIW2 + i(tl - Xl)

T21r1(ti) - T22t2(tl) T23F2(tl) - T24r1(t1) 1t

Xr 3(t2) +Hjsf4(t2)

2n1L (x sinG 1 csB( ib) + i(t2 -xcosO + y1sin6)

(3.17)
H 19 r3(L ) + H2 r()

(x~sinG + y~cosB)(c + id) + i(t2 - x1cosB + y1sin9)

H21t3(t) + H22r4 Y
(x~sin6 + y~cosB)(a - ib) - i(t2 - x1cos8 + y~sin8)

24 VY
H+ t31)+ 2 4(2

+(x~sinO .y~cos6)(c - id) - i(t2-x1cosO .y~sinG)dt

or the x2-Y2 frame:
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T.4 XbmR1Y 2V A Y-A A

2% (~ib)+i(t2- x2) +y,(c+id) .i( - x2)

PS Y3(t) - 116 r4t2  P7 r4t2 - 118 r3(It)
Y2(a-ib) - K(Y2 X2) -y 2(C-id) - KYt2 X2)Ij

1 r G It1(t1)+ G2 r2(tl)
2St MO 2 2C"@)W + K

3fI (ti) ++ G4s8)w4  -

L - ig+yCSB iKtl X2COS a Y2SinG)

G3 t(t 1) + G6 f2(t1) (.8
(-~in y~o8w 2 +i~1 -x2coso - y2SinB)

+ (- G7 fl(tl) + G8 f 2(t) t
( 2 sin8 +y2COS6)W2 i(t - x~cos 8 - y2s in 8)

A 3
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CT _g I FR3( 2) -AR,0r4Q ) +RAIr 4() -R I2 3(tz)

RUYY(2)-R 44Q) R15r4( 2) -R16r3(t2_______ %_______

.Y2(a-ib) - iKY-X2) "Y2(C.id) - i(t-X 2) j UL

rd 09 1(,,) + 1,0t2(ti)[(-X~sn +y2COSB)wi + i(tl - X2CoS6 - y2SiflG) (.9

+ G11t1I(ti) + G12 f2(t1)
(-X 2sinB +y2COSB)W 2 + iKt1- X2COS -Y2Si nG)

+ -xsi8 G13 F 1(t1) +. G14r2(t1)
(X2iO+y 2COSe)W1 - i(t1 - x2cos B - y2Sin 8)

+ (G~sn G15t1(ti) + G I r2(tl) ]dt~
2iO+y 2COSB)W 2 - (tl -X2COSB y2Sin8)

%5
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T r L R"/)(t) - R1 f() P1t 4 () -R2o(
TY2v- 2" y2(a+ib) +i(- X2) y2(C +id) +i(t- X2)

XdLL
+ y,(a-ib) - i(t- x.) y?(c-id) - 2(T x2)

a 3 17r 1(t) + G 8(t)"
(-x sin8 +y2COSO)W, + i(t1 - x2cosB - y2sinB) (2

XNX (3.20)

G19 f1(t1) + G20f(t 1 )

(-x2sinB +y2cosB)0u2 + i(tl - x2cosB -Y2sinB)

G21 f1(t) * Gf22t(t)

(-x2sin8 +y2COSO)Wl - i(ti - X2COS8 y2sine)

G23 f1(tl) + G24f2(tl)
+ (-x2sinB +y2cosB)W2 - i(t - X2COs - y2sinB) d

In the stresses (3.15-3.17) or (3.18-3.20), there are four unknown functions fl, f2 , f3 , f4

which must be determined from the appropriate boundary conditions for this problem.

Since the plate is under uniaxial tension a0 , for the crack lying on x2 (xa < x2 < xb)

we have: T (3.21)
ay2y2  (3.21

T xzyz =0 (3.22)

And, for the crack lying on x1 (xc < x1 < Xd) we have:

T 2

-r -a Cos e (3.23)
T
Oy, y, =- o c 0 1.3

T " osinB cosB (3.24)
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applying these four boundaries and normalizing the variables x and t by

substituting the following:

z(Xb - Xs) + Xb + X& (3.25)
2 + 2 (.5

X S2(Xb - X) + Xb + X& (3.26)2 2

d 2 G -1 <72Is2 < (3.27)

and
t 1(Xd - X0) Xd + X0

1 2 + 2 (3.28)

S1(xd - Xc) Xd + XC
2 + 2 (3.29)

," Xd X ¢ .

dt-- 2 dr1  -1 < 1,sl < 1 (3.30)

a set of Cauchy type singular integral equations is obtained as follows:

,,-

1 to11,1
C121 d-T + K13f3( 2)d 2 + JK14 f4( 2) dT2 = "acos 8 (3.31)

I -1 -1;"

2 1 ,f 1 1  1 d 1 ".,

0 1 Sd + K23 f3( .2 ) dK2 + K24 t4( 2 ) d72  - o sine cosO (3.32)21 -s - .,"
-1 s~ 1 -1

1 1 1 --
1 3 j 3(1.21 dj2 + C34 V7 2) dT2 + K 31 f1(-1.) d'it + K32 I2(,1 ) drl o (3.33)

-1 z2 2 34 2 - -

0(43 ( dT+C44 , dT2. K4 1 I'(Tj) dT1 + K42 f2(t1 ) d 1  0 (3.34)
-1 2 S2 -T 2 -S 2  -1 -1
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which must be solved for the unknown functions f1 ,f2 ,f3 and f4 . For single-valuedness

of solution it is necessary to use also additional conditions which in this case are going

to be equations of the following form:

1 1

-0 (3.36)

-1 -1

Jf3(Q) dr = 0 (3.37) Jr4( -)d = 0 (3.38)

The constants C's in (3.31 -3.34) are real numbers and are calculated according to the

following expressions:

T14 + Ti -TO -T 15  c R11 -P10 + P14 - p15C12 = 2ni C34 =  2ni

T17 -T20 -Tzl + T24 . R17 -R2 0 -R21 + A24 .

21 ' 2ni C43 = 2ri

-9 12 - 13 +P 1 ; R -R1 8 +R 22 -23
33 2ni 2

The Cauchy type kernels Kij are defined as follow:

X H1
b -b& r 9

13 2n [ Si(Xd - Xd + Xd +xc][sine(a + ib) - ICOSO] + 1Lr2(Xb -X,) +Xb +~ Xs)

[s5(xd- x¢) + xd + xcl[sin0(c + id)- icos8 + i[.2(Xb - xe) + Xb + x]

H13

[sI(x - x) + X+ x+ [sine(a - ib) + icos]- i[ z(xb - x.) + xb + X,,]

Hiss

[sl(-Xd x, + Xd + xJ[sine(c - id) + icose] -i[2(X b - x) + xb + X]

A 38

. ,1



%I A W.k'MI N WT? VIVK7, Wr k- ~f V 1IL71V V .." W.. A. 1%I NADC-871 33-60

K X b - [ H10

2nt I [Sl(Xd - Xd) + Xd + xI[sinG(a + ib) - 'COSJ el+''2(Xb -Xl.) + Xb + X.]

+~H 12

[S I(Xd - Xc) + Xd +x0]I[s ine9(c + id) - 'COS el + 'I[2(Xb -Xa) + Xb +x&j

H 14 ________

IN(X - Xd) + Xd + ~!~8a-I)+io6 [zX ) + Xb + X.]

+ [ld-x)+Xd -H 16 ]
[S (d -Xd+ X +xjsi G~ -id) + icosj 81 i[ z(Xb - xm) + Xb + Xai

X b X& H17
<23 2n~ [S(X IN X) + X d + x,][sinG(a + ib) - 'COS el + 'I[ (Xb -X) + Xb + x]I

+ 
i

[Sl - x) Xd xcJ[s in 8(c Id-oJ + id)x - +TXb(Xb~

H21

[Sl(Xd - Xd) + Xd + xcI[sine(a - ib) + iCOSBj - I'r2(Xb -Xa) + Xb + x :%

( Sl(d-x)*X + xc1[sine(c - id rt3
1Id) Xd+X iC0S8J 'I I[2X ) + Xb + x&j
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K Xb - r& His
24 2s L INX - Xd + X d + xcllsinG(a + ib) - icosB] + 'IT2(Xb - X.) +Xb + -

H20

[S I(Xd - Xd) + Xd + xcl[s in 8(c + id) - icos 8] + I[ r2(Xb - X.) + Xb + X-1

H 2
+ 

2

IN~x - Xd + Xd ) ~[sin 8(a - ib) + 'CO] B - 4T2(Xb -Xo) + Xb + e

H H24 ]
[S I(Xd - Xd) + Xd + xc]Is in 0(c - id) + icos 8] - 'I[2(Xb -a + Xb + Xjl

X -xc G a

K31 = 2 n -[S 2 (Xb XI.) + Xb + xj[sin8 wI + 'CO 81 + 'I[ (Xd -Xc.) + x d + Xc]

+ 
1

[S2 (Xb -X11) + xb xjXs inl 6 w + iCOSG] I[Tl(Xd -Xc) + Xd+ c

S - 2(Xb Xm) + Xb + x~l[s in 8 w - iCOS6] - I[ (Xd -Xd) + Xd + XJ J

~~~~~ +S x.- ' U ,,]vsv. .- .- jd , -i-. . *'[*.-.T-':5
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K = Xd -Xe [ 10

32 2n L S2(Xb - Xs) + Xb + xj,]sinO w, + iCOSBj + 'I(Xd -xc) + X d + C

-IS2(Xb - Xa) + Xb + x,,Isin8 w. + 'COS8el + (i[T(Xd -X0) + Xd + XcJ

G14 ____ _

-IS 2(Xb Xa) + Xb +x ,IsinOw - cs]-i (dx)+ X + X

+ G16]
-[S 2(Xb, - XI.) + Xb + x,,][s in8 W2 - 'CoO]e - I[ l (Xd - x d + Xd + Xc]

K X d - IcG1
K1 -2 S.I L s(Xb -Xa) + xb + xjj]s in 8 + icos 8] o*i[ I[N Xdx) + Xd + Xc]

-[ 2(X6 -Xs) + Xb + x,,J[sin8 W2 + icoO]G + i[Tl(Xd - d~ + Xd + XcI

G

3
+ S(Xb Xs) + Xb+xjsnw 23 -ixdx)X+x]]

4,..Xd~X - c +Gxs

K42 2n [ s(Xb -Xs) + Xb + xj,]sinG w, + icos8] + i[ r1(Xd -X0) + Xd + XcJ

* G20

-[S2(Xb - XI.) + X b + xjsinB w1  icose] - if (Xd - Xd+ Xd + X]

-[S 2(Xb - Xa) + Xb +x,,1siflW 2 - iCOS8] - II(Xd - Xd) + Xd + Xe]

p.A A41



,-W.-, :, ,.- V ,-... W W. W ,, L = . C; , . . .: - ' ,. , ,- . , , . -. . , . _ , - ,, 2,,'.- 2, ,

NADC-87133-60

IV. Method of solution - set of Cauchy type Integral equations.

The set of equations (3.31-3.34) are known as singular Cauchy type integral

equations. They can be solved by using Lobatto-Tchebyshev collocation method. In

this method, we replace each equation by n linear algebraic .quations of the following

structure:

C OPE + FKu F (rk) wk = p(x i) (4.1)
k= - Xi  k=1

where a,0 = 1,2,3,4 and

(k- 1) k=1,2,...,n (4.2)
n-1

W1 = %= 2(- 1) Mr .--- r= 2A..., n- 1 (4.3)

(2j -1)n
xi  CO jo 2" 2 " = 12,..., n- 1 (4.4)

I 2n- 2

Also, equations (3.35-3.38) are replaced by:

, F(t) Wk =0 (4.5)

Hence, the set of integral equations together with conditions are reduced

mathematically to set of 4n algebraic equations with 4n unknow,-. in the form:

[A] (F) (P} (4.6)

where [A] is 4n x 4n matrix of coefficients and ( P) is loading function vector. So the

solution of the problem is:

-[AI (4.7)
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V. Stress Intensity factors.

Stress intensity factors at the tips of the crack are defined as follow:

kl(xa) - lir 2(x7 -Xz) a ajx 2 , 0) (5.1)

k2(x ) = lrm J\fx X- x 2') (5.2)
x2 "* x&

kl(xb) = lim J(b)" ayyZ(X 2,0) (5.3)

k2(xb) = ur , x) y(x,0) (5.4)

k2(x)= lim Jr2x - ) ax(X 1,0) (575)

X, -#pY

,.. '= kl(d 1 i 2(x- Xd) ayy(Xl,0) (5.7)"."

i 
-.

k2(Xd) = lira'Mx Xd)" xy, (X1,O) (58)7
x , -+ '-"

where the stresses are the total stresses (the superscript T is omitted)...

It is also possible to express the stress intensity factors in t rms of a special function

evaluated at the ends of the crack ie. FL(1) or FM(-l) (g=1, 2 ,3,4 ) by applying the

following transformation to the singular part of stress equations.

It is known, [1] and [2], that the singular behavior around the end points of the crack

can be expressed by:

A43
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b 1
1) dt F()(b e (z -a) P + F(b)(b-a) (z-b)" + 0(z) (5.9)

1 t -z F sinnP sinf:x
a

where a,3 are order of singularity at a,b respectively; z is a complex number; 0(z) is a

higer order error term which can be neglected. Function F(t) is assumed to be

bounded because singular behavior of f(t) is completely determined by the

fundamental function w(t). For this class of problems in L.asticity the fundamental

function is of the form:

Yt) = (b - t)a(t - a)' (5.9a)

Thus, we can write:

t( t) = FW( t ) (b- t)K(t -a)' (5.9b)

If the singularity at the crack tips is -0.5 and a=-1, b=1 equation (5.9a) can be written

. as:

a(t) F-" t) (5.9c)

Using the above equations, it is assumed that, the order of singularity at:

x is [
'aP2

Xb is M21 0(2
(5.9d)

xC is P,

xd is 1

It will be shown in the case of a skewed crack configuration, that the order of

singularity at the common point (xb=xc=O) is not equal to -0.5, while at xa and xd it

A 44
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remains -0.5.

Applying the transformation (3.26),(3.29) into equations (5.1-5.8) we obtain the stress b

intensity factor k1 (xa) as:

k1 (xl)=Iim 2(x-S 2 Xb - Xb + X) %ryl y SV 0)
Il(Xk) = liS2 

Z  'zzSO

=Ilir 2(- xb" x
SZ..M. 2 2 )(1 +S2) OyZy2 (S2.O) = (5.10)

S2S

All the singular terms in equations (3.31-3.34) are transformed using (5.9). For the

case of a=-I and b=1, the first two terms of (3.31) become:

i f

1 1 "7-
du2=mCr2 F . S + 1) 2.
172S 2s in(-)

+ F3(1) 1 I (S 2 2 (5.11)

insin((-)

-1 1 -

+F4 (1) 12 sin(- (s2 - 1 (5.12)

Finally substituting the sum of (5.11) and (5.12) for ay2y2(s2,O) into (5.10) we have:

= Xb X: F33 3(-1) + 4F(-1)] (5.13)
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All the other stress intensity factors are obtained in a similar wa":.

Hence,

X2(xb>[ C,4 3 F3(-1) + C44 F4('I)] (5.14)

k,(X) [ C33 F3(1) + C34 F4 (1)] (5.15)

Xb - X 3 0) C3 401k2(Xb) =-n 2 C3 F( F4(11 (5.16)

II

kl(x)= X d F (5.17)
C)2 12 2(-1)

, I

k2x) n j Xd Xcc 1 Fl(-1) (5.18)
Xd - ¢ -c

kj(x)= 2 C F(1) (5.19)

rXd
k2(Xd) d 2 } C21 F1(1) (5.20) .

VI. Skew Crack Configuration xb=xc=O.

Introduction.

By setting xb=X=O in equations (3.15-3.20) we have the case of a skewed crack in an

infinite plate. The boundary conditions (3.21-3.24) remain the same and equations

(3.1 5-3.30) become:

A 46
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X
(" 2) (6.1)

xz =(1-s2) -1 < (2'S2 < 1 (6.2)

X
d=" Z d-T2 (6.3)

22

t =(1 + TI) X (6.4)

Xd

+ -1 < Tj's < 1 (6.5)

dt Xd dr (6.6)
121

Normalizing the integral equations with (6.1-6.6) we obtain again a set of integral

equations as (3.31-3.34), however the kernels become singular when tk and xj

approach the common point (xb=xc=O). Thus, a different kind of collocation method

has to be employed. Also (3.35-3.38) no longer holds, so another set of constraints

must be applied.

If one attempts to use the Lobatto-Tchebyshev collocation method as a rough

approximation, then the following conditions can be used:

F1(-1) = 0 (6.7)

Fz(-1 ) = 0 (6.8)
F3(1) - 0 (6.9)

F4(1) -0 (6.10)

since we have to assume that the function f(t) is approximated by F(t), for example:
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t)  F3(t)

but as it was mention above, in the skew crack case at the common point (Xb=Xc=O)

the order of singularity is not -0.5, the proper fundamental function is actually:

IF F;(t)3(t) (t- 1)"
rt+

where F is new bounded function and a is not -0.5. Considering the above we have:

* t=1

~~.d.~~ I II',.

F3(t) F;(tl Ft- (t- 11)' F3(1)= F3 (1)-0 0

ave:

similar arguments (6.8-6.10) can also be proved.

It is better, however, to use the Gauss-Jacobi or Lobatto-J,.cobi collocation method,

because the general order of singularity 03 can be applied. In this case, we can use the

additional constraint, that the displacements at the common point must be the same,

either for the main or for the kink crack:
S.j

1 1

Xd .1 - J ( ) sinG - ,,)cosE d- 2  (6.11)
-1 -1

Xd -() -- X tf(.r2)cos8 + t,( T)sinO dr (6.12)
-d .1

We also need two additional equations and to determine the order of

singularity J3 at the "wedge appex" ie. common point of both cracks (0,0).
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Singularity order for a kink crack problem.

Let's start with (3.31) where we set Xb=xc=O. Then, the kernel becomes:

H9

2 n = -)(s I + 1 )[s in B(a + ib ) - ico s B] + i( z2  - 1 )

H 1

Xd

(-- )(s, + 1)[sin e(c + id) - icos8 + i(,r2  - 1)

H13

+ -) s I  .+ 1 ) ( s i n ( a - i b ) + i c o s e - i ( 2  - 1 )

His
Xd

X&)s 1)Is in G( - id) + icos 01 - i(-r2 -

or

-iH9

K 1  1 d )[sine(a + ib)- i cosl(s 1 +1)

1 3 = ' ( T i( X &Ii 
i

,

.1H1

+ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ ____ _____. . .
p..

(T 1) i _ )[sin (c - id)-i cos](s , + 1)

2 a&

A 
iH1

( z- 1) + i(- )[sine(a-id) +icose(s + 1)
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Let's define new variables as follow:

P2 -rZ 1 -2 < P2 < 0 dp2 = d-r2  (6.13)

and

W1 - [cos + isinB (c + +l ]1 )(s, +11 (6.14)

X&
x

W2 c~sG + isinO (c+ d +) (6.15)

w.=[cosO isine (a - ib)](_ _..)s 1 (6.16)

w4 =cose + isin6 (c- id)](--- .)(s 4I) (6.17)

Noting structural similarity between K13,K,4,K23  and K24  also substituting

(6.13-6.17) in (3.31) and in (3.32) we obtain:

0 0

n 4. P- +z d H9 -r j 3-2 d pz  
"

n_ s2 nZ W

0 0

HI(p 2) H 4(P2 )Hit dp +2H, -- dp2
n nrI(p22)

, P2 "w .Z P-2w

+ His -P" dp - HD ocos 
"-6..

A50 I
H 12 1a VPa d 2 +x H~ 14, g .1 j d
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and 1  i J2LPCz,1 ! 'z(.,) l i 1 3(P2)

-1 -S 1  L 171 .2 Pz" -w1

00 *

1 f(P 2) ir ____

gd P2  2+ --'-- dP2
2- 2z .2 P2  W3

0 a
H f 3(p2)d 1 (P) (6.19)

3 ' W - H IS- - dp2
n 2 P W2 P 2 W

ooIt-1" 20 zW d P2 + Hz 22 d- d P 2

1 W4(p)
00"

-H-24 n dp2  = P2osinE cosB

',

Performing similar operations on (3.33) we obtain:

rw
K31 = -X (- 1 - s2)(sin8 w, + icos8) +(r + 1)

+

(X ~) -S2)(Sin W2 + iCOSO) +- + 1)

Xd

S &)(1 S2)(Sin8 w, - icos) - i( 1 + 1) ]
Xd- )(1 - z(in8 ) c s )- ( t +1 <

'--')1 s2)(sin W2 -COsB) i'(T1+1) i%
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.%

or -_iG9___

K 3 1 1 1 a ,.
31 - 2 (1 S2)(sin8 w + icos8)

(TI + 1) - I(- t)(1 - s 2)(sin6 w + icosG)
Xd

i 1 3 ",

(1 1)+ i(- !)(1 - S)(Sin8 w1 - icos) S

+ 1)+ i(- 1)(1 - s2)(sin8 -Cs2 'COS@)
XdJ

Again defining new variables: -

+ 1=r dp1 =d-r 0 < P1 
< 2 (6.20)

and

z1 =[Cos8- isinewt} - (sw- 1) (6.21) .
d

z2 = [cos8 - i sin8 w,]( -)(s, - 1) (6.22)
xd(x)

z3 = [cose + i sin8 w,]( - (s2- 1) (6.23)
Xd

Z= [cos8 + i sin8 w,](- (s2 - 1) (6.25)

d

Substituting (6.20-6.24) into (3.33) and (3.34) we obtain:
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f f (T)

33W 3 2 sdr2 + 1tC 4 WJT

2 2
11' p 1 t1(p1)

3 9. dIf +dp all- f~ dp i d 1 2(62)

o o 1 IZ no 0I

2 2( p)I
-Gl G dp.

Pi- -3 SIZ(.5

2 2

G10 J dpl - G1 JL~p n

2 2 '

and

1 3(r2)1 !t )nC 43 .~j d-2 + lC 44  j 42 r
- 2 2Z -1 * 2 -S 2 2

+ ±[G~i t(P1) d 1 -f 1(p1)dp

GG 1 7 n dp i -Ji dpi

20 2

1 0PI 1 fl 2

+ 2 j - dp1 +G G23- j dpl
0 Pi , 3  pi - z4  (626

2 2,

G f pl GA53p
is n 0 P - z 1 2 n 0 P i zS
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It should be noted that for s1-4 -1 when -1 <s, < 1 Re(w 1 ,w2 ,w3 ,w4) > 0 and for

S2-- 1 when -1 < s2 < 1 Re(zl,z 2 ,z3,z4 ) < 0. So applying (5.9) to (6.18) and noting

that terms with f3 and f4 are singular only for P2=wi=O or r2=1 and s1=-1 we

have:

nC 12 L F2(-1) 2'coti:r , (s, + 1)' + F,(1) 2o'cotna,1 (1 -S1) -

-i-{ F3(1) 2 1 -- h + 0(p)

. 2 4( )  si--- W ap

Si flrcZ

F 30 F() 2' sin, +; (P)
1 :

+ H1 F3(1) 2 1,

s1n w 4 * + (P) "0cse.-'

+ iHis{F30) 2  1 W + O(P)]

2 nn (627
i Hi F 2f1 1a w~+0(P)](.7

12 F(1 2
2 40 sinncLW2 +0O(P)]

Si Hr

A14  F 42' W' 
"(P)2'' sinrw

rF40) 2' _ 42ON0_Csa

2 sinnac2

where ua2f 1 ( are chosen according to (5.9c).
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Analogically from (6.19) we have:

iC,21  F,(-1) 2" cotnp, (s, + 1)01 + F(1) 2'cotc , (1 S)]

2 T nF3(1)2a + +0(P)]

*4- i H19 IF 30) 2 0 +0O(P)]
2 ~ 1 ino.

+ H 21 F30) 2 0w! + 0(P)]

2 sinoLT (6.28)

- H20 F401) 2' 1 '+0(P)l2 L sin='

- 22 F 4 ( 211 -w 2

2 [- " 2" FL 2' 1,, '+0p1

" 1',n,

I'.

Similar operations with (6.25) and (6.26) when terms with fl,f2 are singular at pl=zk=O

or T1 =-1 and s2 =1 give us:
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rL033[-F(l 0ctp s )"+F3(1) 20'cotn .2 (1 - 2

n C34 [F 4(-l) 24cottf 2 (s2 ' + F,(1) 20cotwD(1

i G 9 Fl(- 2-z 1 )" + ONp~
2 LlshrinnJ

i G 1 0
2) + ON

+ iG13r F(l)2 1 1 ),+OP

+ i Fn13 1 2 (z) O(J
21C 4) +SO2G F1(-1) (6.29)

F2(-)(2z 2) + ()

2si nint3 1

i G12r 0~___
+ .. F2.... 2 ( z )

- ~ ) Sfl2)3 + -

i G1 r*11
- 2(-1) 2 fl~3 ) O(N

and
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043 F 3(- 1) 2 4" c o t nP 2 (s , + 1 ) "  + F 3(1 ) 2 0 1 c o l u . 2 ( 1 - s 2 1 .

+ 'C, 4 4-F4(-1) 2'c otf3P (s .+ 1)0" + F 0(1) 2 0"cotn4& (1 -s ) I

" 1 F,(-1) 2"' n (-z) + O(P)J

9G 190

: " FI(1) 2 " sv~ z2) + 0(P) :
sinrnP1  )+ )

+ ~in FI)2z3) + O(P)

', 2- FI(-1) 2=" z,4) + OWp
FG(_I ) 2 I I3( P+ 2sinP, (6.3(p)0

+ F2(-1) 2 1  (-z3) + O(p)

I1 
sln I U

2 1 -)2 sinap1

2s-12 2(-' sinttP, 2) + ()

*G20 F(l1)2 --- (+z 2 (P)

Si G 24 3z 01

1 1

F2( ) 21 cot2=1 0
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.P.

or COSI 0 : <

'a..

Multiplying now (6.29) or (6.30) by lim (S + 1) -1 < P2 
< 0 we obtain:

62
F30) 2 cotrI = 0

or 1
CotnP2 =0 P

Let's examine (6.27-6.30) at s 1 --- 1 and s2 -01 by multiplying (6.27) and (6.28) by:

lim (s + 1)-  and (6.29-6.30) by: im (1 -s 2)"  where p1  -c.= p,.s 1 - 1SZ - 1 !)

We obtain:

1iHXd\ '.

- nC F2(1 1~n - 1 1F~n12 201 30) -[cose + siin(a ib)]--11r C7 2( " o 3-- -F 1 sinai}a

' Hi Xd)J-H F3 1 1 [cos + i sine(c + id)]O .2"I- F2 sinap -,.:

1 1 / Xd)\ b
+ -2-- F3(1) [%/i sin-- " x- .

+ H1 5 i 1 [cos8 - i sin8(c - id)]o (O.x4).-
2 '7 sinp x-,

F 1 1 [cos8 + i sine(a + ib)]( .)

2  4 i) F2 sinP x

iHF42  1 1 [cose+isinB(c+id)]1(.d.
2" -2 sinnPr x"

iH,,4 1 1 [cos8- isinO(a ib)]P(Xd)--- F4(1) J2 sinrxp X&-:

IH16F 1 oid)]Xd.=0
+ F4(1) [cos sinr 8 - is i'n6(c - (
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or

F2(-1)(-nCl 2 CoSnp) + F3(1)I(--. -Hfo8+Isn( b]

-H, fcosB + i sin8(c + id)1 + H13 s - isin8(a - ib)]ft

" H,,[cosO - i sinG(c -id)j0

" F 4(1)k~) L H10[cos9 + i siri(a + ib)10

- H121COSO + i sinG(c + id)]n

+ H14 [COSa - i sinO(a - ib) ]0+ H 1o6 [CS i sin8(c - id) )0l 0

Analogically from (6.28) we obtain:

F(l-n+F 3()-. sdiH (a +lb)] 0
F()(rC 21 COSn) + 0 X . 7CS i

-H,9[cos6 + i sinGc + id)]0t +H21 [COS6 i sinG(a - ib) j

" H23 c - i sinG(c - id) o

+ F4 1(-- ) j H19[cos8 + isin8(a + b)]0  6.2

-H2 cs + i sinG(C + id)]o
20 01 1

+ H22[COS8 - I sin8(a - ib) 10+ H241COS8 -I sin8(c - id) =0

Examination of (6.29) gives us the following:
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n33F 30) Cnp+n34 F41 op

+ G9 FI-) 1 ;os i sin8
.72'Snn3 [Cs8x d

iG 1 1 3
= 1 Fj(-1)----cs-snw1--2O -ji sinmG w Xd0

2 G

2~1 F,(-1) - 1 cos6+ isin w wJ(X81),
2 2 sinno ~ Xd

2 FI(-1[cos B-isin9w 2 10(-~Z

2 7 sinnp O~1Jxid

F(-1 -- cosO i sinG wlt--
2 2 IsinpLJ xcid

%(1)2 2C3 on~ (1) 1tC3 cos 2,( 1 ( i 9 o9-sn
ici

+~ ~ G4oGsi 2 
1 2 - 1 ,3 cos +isin w, 1  0 loG~snw]

-1 co1

-~ ~ F1 EoGii~, 1 (-1 G E Os + sin~w2 ]J=0(.3
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I.M.p

F3(1) rC43cosnhp + F (1) rC4iCosnP + F1(-1) - 617[ COSO - i sine w10

d
+ G19[ cosO - i sin8e U2 0 - G2 1[cosB+isin8w 1 ]P - %23[cos8+isinawz]]

+ F-1) 2 x [6 18[ cos8"- i sinewt]O + Gzocos8- i sine

- G22[cos8+isin w1j - G2 4[ cos8+isineC2l]] = 0 (6.34)

The set of equations (6.31-6.34) gives a system of four equations with four unknowns

F1 (-1), F2 (-1), F3(1), F4 (1) and the right hand side equal to zero. We can write the

above set in following form:

(-nC12cosnp) F2(-1) + A CO f. C3 F3 (1) + A cos-- 04 F,4(1) = 0
X1 X& -

(nC21 cosnp) F,(-1)+ & A2F0)+ -- &- N -A 2 F4(1) = 0

1 (6.35)

')" * AIF,(1) +- ) -AzF2(1
x x~2312 2('

d d

+ n COSnp C33 F301 + n cosntp C34 F4(1) =0

* (--) -f A4 1 F1(-1) ( A,, F2(1
x d Xd2(

+ mcosit3 C43 F3(1) + icosrt C44 F4(1) = 0

In order to have a unique solution of this system of equations the determinant of the

coefficients must be zero.
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p..

- 4Co 4npC12C 21 c33 c44 4 o pC1 c3 3A4

22 2
It 2 nt 2

- c--cos t C 12 C 43A 4A3 1 + -T-Cos*n Cl2C33A 24 A41

2
nt 2 A A4t
4 -coSrnp C12C44 A23 A31 + n COS '. C12021 C34 C43

2
S 2A 1

+ -OS fTp C0210c44 A132A3 + A13 A24 A31A 42 (6.36)
21 AIt 2- *o1l}?

16 1""324' 3241 4 ifC 21C3A1Az ;
z2-A 13A 24A 32A 41 Cos pC2 34 A13 A42 p

2
It 21

"COS n C2 1 43A14A32 - T6-A 14A23A3 1A42

21 It 2,,.,,,

16A 4 A3 32 A1 + 23CO2 41[4 21334A2 = 4 0.

where:

13= - + H[cos8 + isinB(a +ib)]"-H 1 )[cose, ifsin6(c +

+H13[cos8 -i sine(a- ib)] 0+ Hs[cos6 - i sin8(c- id) ]0

A,= - H1o[cosO + i sinB(a + ib)]0 - H12[cos8 + i sinB(c + id)]0 +

+ H 4 [cos - i sin8(a - ib) ]+H 1 [cos8 - i sinS(c - id) ]i:

*2= -H17[cos8 + i sine(a + ib)]" - H19[cos8 + i sin8(c + id)]0 +

+H 2 1[COSe - i sinB(a - ib) ]O+H,3[cosB - i sinB(c - id) ]0

=2 - H,[cosB + i sinG(a + ib)]o - H20[COS8 + i sinB(c + id)]p +

+ H22(cos8 - i sin8(a - ib) ]+ H 4[cos8 - i sin8(c - id) 1,'

A 9G[cose-isine w,]" + G[cosB- i sine]-31 9 1211 1

- G131 cOs9 +1 sine W]O - G,5 [ cose + i sin8 U]21:
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A3Z= G10[ COS8 - i sin8w1 ] + Gz[ cose-isin8 2 J] -

- G 41cos8+isin8w]0 - G15[IcosB+isin W2 1]

A4 1 = 171COS- isine wtjf + G9 [ cose-isine 210 -

- G2 1[ cose +i sine wIf - G23[cosB+isine W 2]'

A42 = Gas[ Cos6 - i sine w1J0 + G20[ cose - i sine -

- G22 cose +i sine w11f - G24[ cose+i sine W21

The only unknown in (6.36) is 0 which has to be found so (6.36) is satisfied. Once is

found, two equations from (6.35) can be chosen, that together with (6.11-6.12) become

the additional conditions necessary to solve system of integral equations

(3.31-3.34) by Gauss-Jacobi or Lobatto-Jacobi method.

It should be pointed out that in order to avoid multivaluedness of solution only one

branch of complex number must be taken for the calculations.

The method of choosing the branch is explained as follows. Formula (5.9) is true for

representing crack a-b and complex number z-a=rlei01 and z-b=r2ei02 where

argument is determined uniquely by making a cut of the complex plane between poles

a and b so that 0<01<2n and -n<2<n. In this way, any complex number z taken

to real power 1 will have a unique solution as follows:

[cose- i sinelwl = P" e = poe
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VII. Stress intensity factors for skew crack case.

The set of singular integral equations with the generalized Cauchy kernels and four

additional conditions in the form of the equations (6.11), (6.12), (6.31) and (6.32) can

be solved by Gauss-Jacobi collocation method. We can find tk as roots of Jacobi

polynomial of order n as follows:

Pn (t)= 0-

Collocation points xj are found as roots of:
P.

'l

P..' (x)--O
P(U+1,0+1) X 0

and weighting coefficients are calculated according to formula:

Wk~. (2n+o+P+2) r(n+om+1) r(n3+l1) 2' +P

(n+1)!(n+o+P+1) (n+oc+P+1)p np1 (t - )

In order to find expressions for the stress intensity factors we start from definitions (5.1-

5.8) and follow the same procedure with different order of singularity.

Starting from (5.10) with xb=O.

ki(xa) =hrn 77 7fT J7 '' airs2  O) (7.1)

Since at xa only the two first terms of (3.33) are singular, using (5.9) we have:
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11C33 i 2 S d 2 = 33 s in( . ) % 2

2 +

Itl

-1~J 2 in(-
1 1I

F3()T s-n- (s2 - 1)"

and

n (C2) d4a T2 L ,C F F4(1) (2)0 e\ 41

+ F40) 1 1 21J2sinn~p(s "1 --

Substituting the above results for stress in (7.1) and after some algebra we get: .

'a

'.:
'.'

k,(x,,)= n-,2" [c1 3 3F F3(-1) + C34F,4(-1)] (7.2)

k2(x) 20 .j7' 4 3F3(-1) + C44 ( (7.3)

kl1(Xd) = - nT,2l "Xd C 12F 20) (7.4)".."

20 CF(7.5) p

k2(xd) 21F1)

where rest of stress intensity factors were found in similar way.
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VIII. Normalized stress intensity factors.

In order to present computational results for two crack configuration and for skew crack

configuration, the stress intensity factors are normalized.

Let's define length of the cracks as XaXb=Ll and XcXd=L2. Then normalized stress

intensity factors become:

k k.

k n P p 1,2(8.1)

'

Thus, the mode one stress intensity factor, for the two crack configuration, at xa is:

k n(x) . C 33 F3(-1) + C34 F4(-1)] (8.2)
0 V,

and for the skew crack case:

kn(x) C33F 3(-1 +1 4 2
= (8.3)

Go\

IX. Strain Energy Release Rate for xd.

Let's use the usual definition of the strain energy release rate [3]:

_ = .d ( U - V (9.1)

where G is the total energy and consists of two parts which represent mode-I ( GI )

and mode-Il (GII):

G = GI + G (9.2)
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at x = Xd, we may write [4]:
x,+da

dU-dV f d a ay (x1,0) [ Y(x1-da ' 0) - V(xl-da,0)]

x's

T 'X Y,(Xl,0O)[ U(X,- da,0) - u(xl- da,0)]]dx, (9.3)

or
x+ da

G= "J ' (x,0) [ Y(x -da, 0 ) - Y(x1 - da,0) dx1  (9.4)

N+d&L

= -J ,,(x,,0) [ u(x1-da,0 +) - u(x1- da,0-) ] dx1  (9.5)

To evaluate integral (9.3), the asymptotic expressions of stresses and displacements

around the crack tip are needed. The expression of normal and shear stress can be

easily obtained by using the following definitions:

h, .

,',3.• - .0 k 1( Xd) + higher order term s (9 6)YyY, 0 2(x " Xd)(

kZ (xd)
(X0 2(xlXd) + higher order terms (9.7)

Asymptotic expression for the displacements can be obtained using:

Au = u(x1,o) - u(x0,o) = i J, C+ ]cdx,

Av = (x,O) - 'x 1,O) = fie(+) - IdylVl -+ 0 YlyY , VY, y
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where total strains can be found from (1.22-1.23) from total stresses obtained .,,

according to (3.4a,b) using (1.14-1.17) and (3.2-3.3) upon substitution of (3.1) into IV

(2.20-2.25). However, it is known that at Xd only terms with f, and f2 contribute to -

singular behavior. Thus Au and Av can also be found directly us,.g (1.20-1.21), [5]. 5-

AU = ir,(x,)dx, (9.8)
%~

AY = f F2(X1) dx1  (9.9)
I

Starting from this point we shall substitute for fl, f2 from (1.29 - 1.30) taking A,B from

(1.35-1.36) as:
A - KI + K 2 2;

B - -K1 - K 2 1

where

K1 =2 2 J' 1(t,) dt's 2all(WI - z x ;.'.2

K Il 12 (t,) e dt
2 .3 2 2(is 2a 2 2 (W- X2 )

Hence, the normal displacement expression is: a

+2 A ely, 011slv1A e + (Ac1 + Bc2 e2

Y 1= m 2 nJ Is I (a-* - a12 . .22)

" 2 Isly* 02' Islyl 1
B e l + (Ac3 - Bc1 ) e (a 2  ds (9.10)

2
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and for shear displacement the analogical expression is:

-1 r l y
A~u m lrM [Ae - (Ac1 +Bcz)e J(atwls) a2 )

Y 0 2n.1 2 i 2

+ [Be ' %OP1y * - (Ac3- Bc,)e eSlY (a W Z-a 12) e ds (9.11)

where c1 ,c2 ,c3 are taken from (1.13 a,b,c).

With (9.12-9.15) we obtain:

f (t) e t dtI a,)(e- lly; e 1lsly)

2r_-1___1 f (a,2= 1- -z) e-&Y= lim f--.
Y, -4o _ 2a12Is I(w 2- W all =

- ;v)) l

(a 2 2  a 2 )(e _ w l y , e I sl *, ( a 1 2 .a 2)
12 2 2 I i 2, 2  Is a22 2
2 (._sY .'~SV 2 1 ) eIol, l; -,,

(a1 2w2 ~ ~ 1 2 22)(W _____

(e ' ~ v + e l s y ) " (a12w2 a22 )w1(e e + ds (9.12)

and

A 69

A 69 '

P h - .' - '. N -" r- 
"' t

" ' ""% " """e% ."." . % '."."t'""""P't'" """""'""""#" "' " .. ""'''. . €"."r".'.".". . .' -"-.



NADC-87133-60 I

4- er(t,) dtI

,rn i 2s(wa W) j a,, "(aiWlsay2 )(e1ls + e )-1 1 1 2 a1I"1 v

.1istldt,

-c 1 1sjy l) S a2 1; 1

(a11 - 2  - - e y j e- ds (9.13)

For skew crack configuration

X= 0 t= dt =. -xdd" -1<t<1

the equations for displacement now become:

isx d

2 1 1 isx
" 2 2 a12 1A rn fr1 e d [(w )L 'we -e

( -s ) s,(oi - ) e,

2 a12  IS I.2 a12
11 21

" + e~is

al 1 12 0 2
-~Sy 1 (.~sy 1 2 a 12  -' 1 sly; 1ly; e s (914

(e + e )(e(w-- w)( + e)1 ,d (.4
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iSX%

-X e 2 2 2 a 12  Illly* .1lS
"X d 2 d[((w e --- )(e + ) -

Y ,-.* 8 1 iS (W 1  _ W 2

2 a12  - 2 sly;* WjSly; ____2_2_1

( 2 " 2)(e Y + e+ , Sre 2 T d[(W I- a-- )WZal, I 2UY -1 1

41 lslvY, (41lsly; 2 - 12  -0 G)Sly 2 SY iX
(e -e, )w( - we )] e ds (9.15)

22

First we have to evaluate integrals of terms with variable T. Note that they all have

.

general form:

1, "  re ( - )sly + d s (9.16)

_SXd.

where 2' (9.17)

It was assumed that function F can be represented by the following series expansion:

,Ftn = M () (9.18)
n= 1

1 4ow after substituting this for Fi a series of integrals is obtained

I P T ( r)U(1 + T)P d
12=

n1-1

Applyinethe di=u' fruanitrtgbpt

_ n.

12- (-1 P(ia)'' ei(1 - )a/=(1 +,)0 d

I2=(-2)° n.L1
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Now upon transformation r = 2u - 1, dr = 2du, 0 < u < 1 and simple algebra the

integral reduces to:

(Ia Iu mn(4

I2( a n 2,,.n+'e-& ei(1 u)a' u" du2 nn. 0"..

and using the result from [6], it gives:

12= (i a)" 2u4.n+1 eI& r(n+p+1) r(nl+cl+) 4t(f+n+l; 2n+o. +2; 2ai) (9.19)

2n n! r(2n+ +P+2)

where t(a;c;z) = 1 Fl(a;c;z) is a confluent hypergeometric function and

F(x)r(Y)/r(x+y)=B(xy) is a Beta function. The series expansion is true for any T from

interval (-1,1), so

F1(1)= (C

n=

n- F(1) - F1(1) n F(1)n!"(c+l)

since n! r( ).
1 1 1 where ( 2./p (9.20)
2 - r( n + 1 2

and analogically tm

2)((2
F 2 (1) n Pn (1)

F I1

c ) = F2() F(1 F? = 1n ~.1

P p-,P) (1)  (Cl-+ 1)n r(( +1+n)2. -.

()n! 1'(1)-",
c )= F2(1 )  (9.21)

r(n. +)
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<0

Applying all these results to equations for Av and Au yields:

Av= lim A f TS (P+n+1; 2n+m+p+2; isxd)Y l - # 0 IS U" -

( ,, 2 a2 2 -,JSIVI Qv) ;;
'l 1jW a-)W 2(e 1e

Isl2 _(. a a12 (-4 SV e- ls; eASt"2 a , 1 ,.-

+ LSIC (2)2 a, -"JS, eiSY

is- [(W- a,,1 e -e

St (3 a 1  -0lsly WJl

2 a 12  -e" 1lsly; e tslY1 )1 s 0"

- (W 2 -)(e- )+ e ds

4Mn

Au= tim A J-. t(P+n+l; 2n+m~+f3+2, isx d)

I a,+ e

2 a 12  -0OjSly* Q21S1 1
-w---)(e + e A0

+ S (s ~ 2) [( 2  a 12  -Q1IllY;, CQIllY1+ CMIw2  -- )W2(e -e )

2 a12  -~jsiy; sly1 1
-(W2--a-)W 1(e- e )]Je ds

where

- Xd PI d)2.Bnplnml 2+
A m (W~2 2 BW~ p1 n~~~+1-

1w - 2)

By changing the integration interval to (0,oo), the above expressions for crack surface I
displacements become:
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( - Sn-i 2 an 12~6y=Ihm AJ(-1)~ 4(p+n+1; 2n+m+P+2; -'sxd) c n1 2w a)W

-. IY .4y; 2 a12  -cWilslyv 01Ii 1sy 2 a12(e -e )(w2-.)w(e -e A- R

(e -Sy +(u4~l-.!_.12)(e- e 1 A e ds

n-i) c 1 r 2 _- a 12  -cajslyl* OJSIY;
+ S ((-n1,2n+m+P+2; isx d) I n 1(wi I - )w2(e -e )(9.22)

2- 2Ill 1sy (2) 2 a1  -Q yj;
(W~ !)W,(el,) -e + -22 I(w _ 12)(e + )

2 1a1 a11

(w 2_ 12)(ewlIl + IY e Id

L~uIim-F(1)I n-I (n12c2.s4 (1) 2_ a 12
L u ~ l im s11pn l n c . P + ; -i x d W

(e- +~iI e.Isy - 1 2 -0sy + ew1J ___ 2 a12
(2a,,11  iw nw Kw 1 a-)1 2

w 2(e -e ) -IY (w 2 )w1(e -sy*e WY s d
11J

n- ) 2 a 12  "G1 ISMy 0.1Jsjy1
+i t p n l n oi-- , i s ) c n [ w l ( ( 9 .2 3 )

2 12 (2)* ly 2_ a12  - 11sly; QGtIly;
(w~y [ e (w -- )w 2 (e -e )

w1 w2

- 2 a 12  _w~Iy; (.JslY 1 1 e > d
(W2 - a -),( e A e ds
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We now apply the asymptotic expansion for confluent hypergeometric

functions:
r(c) em r(c) Xx.C (9.24)

r(c-a) x r(a)

c= 1 if Im(x) >0
C= -lif Ira(x) < 0

where in our case a= P+n+1; c 2n + m + +2; X=± isxd

Finally applying this to the equations for displacement we obtain:

"hi.

'...

*1
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Ay n l AJ(-l) n-i sn-i r(2noL+p+2) e1v,-+. 0  [ r(n+OL,+1) [XdSJ

+ (no+ +) e- I (1) 2 a a12  - W Sjyj Q2ISIy 1
+~~ r2o.+2)C( [(W I -- )w2(e - e )

r(n+p+1) ix d I 11+ ~

(w~ a 2 -w,Is v e ~I () a1 -e + e

-(w --2)(e-('sl,+e isl)J e isds
'a

11n~ 's1l

n-, n(2n~m+P+2) e 1+r(2n+mc+P.2) e ]
+ SS t3r+1S)

r~nm~) i ds (n~p.1) (ixd +4a+1I

() 2 a 12  ')!l;~2 a12  -0 '11sWy Gw1isly;[n cK~[w 1 -a-)w2(e -e )-(W2- a)w I(o -e

(2)
C( 2 a12  q~s~y (,sliv

Kw YJ w-)e + e )

a 1

2 a12  0' ISIV; Co1sly; iX(w -- )(e + e d s (.5
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- n-i nI I(nmP2 1-"
Au =lim A (1) s 1 r(no+p) e'

Y+ 0 r(n+oL+1) 'IXdS.

r(nm+I) S>d II () 2 a 12  "1- S0 11sy i1sly,
+r(n+op+p2 dS)enu~ n I(Wl a,,)(e +

2a 2  J~ZSMy; Qj2SMy C2) 2a 2  -Q Isl I Q0(11slv
-W ( 2  12)(e- + e n [(W_ 1 2 )W2(e- e ),

11 iiI )

2_ a12  -c"2Sly;o G~jly1  S
(W2 we - e e slds

1i1

+sn-i r(2n~cm+P.2) e it r(2n+cc,+P.2) N'

(1(w-- ) -Q1Js - (2 ~-tl )( dsIY1 .x

2 2 12  -1sl, 0 lslv; 2 12 lY;
+ [([(w,-al --)(e +e -e a )(+e A

+ wn Iw 2 - 11 W(-01II 1sy

Wl2 a1  -Qlyl a~

-W ( 2 -a,2)wl(e_4M - e J &-is) ds (9.26)

Following the integral 3.381 from "Table of integral" by l.S.Gradshteyn and l.M.Ryzhik

[71:

0x' e (pix r(v) (p 2 + q 2 ) 2 exp(- iv arc tg 2~) (9.27)]

p -, V> -1
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we obtain:
a1

&= -2 F1(1) JX-X) + higherorder te;ns (9.28)

and
1

Au=- 2 F(1).X + higher order terms (9.29)

where

F1 k2(Xd) k I(Xd)
,nc21 J ~ 2 ,c 12 F 2

for x1 < Xd.

Now, substituting in (9.4-9.5) and integrating we have:

1 I )1 kd (xd)1- 4~(d C93012 4 C21w (9.0) ~(9.31)

or substituting for C12 and C21 and computing the total strain energy release rate we

have:

22 k2(Xd)W +W ) (9.32)

which has the form reported by Cherepanov for the orthotropic case.

For isotropic material and self-similar crack propagation this reduces to the well known

form: ikd2
"" G x= (9.33)
E
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